Supplementary Information

Enantioselective One-Pot Synthesis of 4H-Chromene Derivatives Catalyzed by A Chiral Ni(II) Complex

Xuan Yu, Wenjie Lan, Jiaqi Li, Hui Bai, Zhaohai Qin and Bin Fu*

Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China fubinchem@cau.edu.cn

Table of Contents

1.	General information	2-1
2.	General procedure for the synthesis of substrates	2-1
	2.1 Syntheses of o-quinone methides (<i>o</i> -QMs)	2-1
1	2.2 Synthesis procedure for ethyl 4-methoxyacetoacetate, ethyl 4- benzyloxyacetoacetate	2-2
,	2.3 Synthesis procedure for ethyl 4-(tert-butyldiphenylsilyl)oxyacetoa	acetate2-2
3.	Optimization of the Reaction Conditions	2-3
4.	Enantioselective synthesis for 4H-chromenes	2-4
4	4.1 The typical asymmetric catalytic procedure	2-4
4	4.2 The reaction of vinyl o-quinone methide with β-dicarbonyl s	2-10
2	4.3 Synthesis of (8-(4-methoxyphenyl)-8H-[1,3]dioxolo[4,5-g]chromen yl)methanol (4)2-14	1-7-
4	4.4 Synthesis of 7-(azidomethyl)-8-(4-methoxyphenyl)-6-methyl-8H-[1,3]	dioxolo[4,5-
	g]chromene (5)	2-14
4	4.5 Synthesis of 9-(4-methoxyphenyl)-6,9-dihydro-8H-[1,3]dioxolo[4,5-g]	furo[3,4-b]
(chromen-8-one (3ak)	2-15
5.	NMR Spectras	2-16
6.	HPLC Charts.	2-45
7.	The structure of 3ab by X-ray diffraction analysis	2-73
8.	References.	2-74

1. General information.

The ¹H, ¹³C NMR spectra were recorded on a Bruker Avance DPX300 or Bruker Avance III 500 instrument with TMS as internal standard. Optical rotations were measured on an Insmark IPdigi300E8 polarimeter. The enantiomeric excesses of (R)- and (S)-enantiomer were determined by Agilent 1260 HPLC analysis over a chiral column (Daicel Chiralcel OD-H, AD-H, AS-H or OJ-H; eluted with hexane/iso-propanol; UV detector). Infrared Radiation were determined by NICOLET iS10. Solvents were purified and dried by standard procedures. The high-resolution mass spectra (HRMS) were measured on a Shimadzu LCMS-IT-TOF mass spectrometer or DIONEX UltiMate 3000 & Bruker Compact TOF mass spectrometer by ESI.

2. General procedure for the synthesis of substrates

2.1 Syntheses of o-quinone methides (o-QMs)

Most of o-QMs were synthesized according to Jurd's procedure.¹

Synthetic procedure for vinyl o-quinone methide.

According to Jurd's method¹: A suspension of sesame phenol I(2.76 g, 20.0 mmol) and (E)-3-argioprop-2-en-1-ol II (1 eq. 20 mmol) in 2% aqueous citric acid (100 mL) containing ascorbic acid (1.0 g, 5.6 mmol) was refluxed for 17 hours, then cooling to room temperature, the oily product was crystallized. After filtration, the crude product was recrystallized from toluene and afforded III, which was directly used in the next step

The solid III(1g) was dissolved in diethyl ether (50 mL), followed by addition of silver oxide (1.5 g), and stirred for 12h at room temperature (RT). The solution was filtered, the residue was washed with dichloromethane until the liquid flowing down became colorless. Then the solution was concentrated to 10 mL, and crystals were collected. The product is acid and heat sensitive.²

2.2 Synthesis procedure for ethyl 4-methoxyacetoacetate, ethyl 4benzyloxyacetoacetate (2f, 2g).

The methanol or benzyl alcohol (30mmol, 1.5eq) was added dropwise to a stirred suspension of 60% sodium hydride (60mmol, 3eq) in THF (20 mL) at 0°C. The mixture was stirred at RT for 2 h, then cooled to 0°C. Subsequently a solution of ethyl 4-chloroacetoacetate **IV** (20 mmol, 1.0 eq.) in THF (5mL) was added dropwise over 15 min. The mixture was stirred at 0°C for 30min and then warmed to room temperature for overnight. The reaction mixture was carefully quenched with 1N HCl solution at 0°C and extracted with EtOAc (20mL×3). The organic layers were washed with saturated aq. NaHCO₃ (20mL×2) and then saturated aq. NaCl (20mL), dried over anhydrous Na2SO4, filtered and concentrated in vacuo. The crude product was purified by silica gel chromatography to give ethyl 4-methoxyacetoacetate **2f** (colorless oil, 2.71g, 85% yield) (1H NMR (300 MHz, CDCl₃) δ 4.15 (q, *J* = 7.1 Hz, 2H), 4.04 (s, 2H), 3.46 (s, 2H), 3.38 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 3H))or ethyl 4-benzyloxyacetoacetate **2g** (slight yellow oil, 4.25g, 90% yield) (1H NMR (300 MHz, CDCl₃) δ 7.43-7.30 (m, 5H), 4.74 (s, 2H), 4.20 (q, *J* = 7.1 Hz, 2H), 4.17(s, 2H), 3.56 (s, 2H), 1.28 (t, *J* = 7.1 Hz, 3H)).

2.3 Synthesis procedure for ethyl 4-(tert-butyldiphenylsilyl)oxyacetoacetate.

10% palladium on activated charcoal (0.21g) was added to a stirred solution of ethyl 4-(benzyloxy)-3-oxobutanoate **2g** (2g, 8 mmol) in anhydrous methanol (50mL) and the mixture was stirred under a hydrogen atmosphere for 3 h. The solution was filtered through a short pad of Celite®, the filtrate was concentrated in vacuo, and yielded the colorless oil and directly used in the next step.

Imidazole (12mmol, 1.5eq) and DMAP (5mol%) was added to a solution of V (8mmol, 1eq. in CH₂Cl₂(30mL), the mixture was stirred at 0°C for 15min, then a solution of TBDPSCl (8.8mmol, 1.1eq) in CH₂Cl₂(10mL) was added dropwise, then warmed to RT and stirred for 8h. The reaction mixture was washed in sequence with HCl(1N, 20 mL), saturated aq. NaHCO₃ (20 mL × 2) and then a solution of saturated aq. NaCl (20 mL), dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The crude product was purified by silica gel chromatography (PE: EtOAc = 20:1) to give ethyl 4-(*tert*-butyldiphenylsilyl)oxyacetoacetate **2k**(2.3g, 75% yield). ¹HNMR (300 MHz, CDCl₃) δ 7.76-7.64 (m, 4H), 7.51-7.39 (m, 6H), 4.29 (s, 2H), 4.23 (q, *J* = 7.2 Hz, 2H), 3.68 (s, 2H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.15 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 203.07, 167.04, 135.40, 132.17, 130.02, 127.86, 69.40, 61.25, 45.69, 26.68, 19.09, 13.98.

3. Optimization of the Reaction Conditions^a

	PMP					Į	<u>P</u> MP			
	+		1) M	etal-Ligand,	CHCl ₃		CO ₂ Et			
OEt 2) p-TsOH, 40°C, 1h										
1a		2a	PMP =	p-methoxy	phenyl	3 aa				
	\sim -	\square	\circ \times \circ			\sim				
$\int_{-\infty}^{\infty}$		$\sqrt{\sqrt{2}}$				N C				
R L1 R =	R Ph, L2 R = /Pr Ph	-Ň Ň/ Ph			Ph I	N,_/ PP 7 Ph	$h_2 N - Ph$			
L3 R =	^t Bu, L4 R = Bn	L5	colvent	T (°C)	time	wield $(0/)^{h}$				
		nganu		1 (C) 25	20min	51	ee (%)			
1	$Cu(OTI)_2$	 T 1		23	50min	51				
2	$\operatorname{Cu}(OTI)_2$			0	5min	65	30 6			
5	$Mg(OTI)_2$			0	5min	05	0			
4	$2n(OTT)_2$			0	5min	84	-30			
5	$Ni(OII)_2$		CHCl ₃	0	5min	81	90			
6	$N_1(ClO_4)_2$	Ll	CHCl ₃	0	5min	54	67			
7	Ni(OTf) ₂	L1	PhMe	0	5min	56	90			
8	Ni(OTf) ₂	L1	CH_2Cl_2	0	5min	73	69			
9	Ni(OTf) ₂	L1	THF	0	5min	trace				
10	Ni(OTf) ₂	L1	EtOAc	0	5min	46	88			
11	Ni(OTf) ₂	L2	CHCl ₃	0	5min	67	60			
12	Ni(OTf) ₂	L3	CHCl ₃	0	5min	79	20			
13	Ni(OTf) ₂	L4	CHCl ₃	0	5min	66	55			
14	Ni(OTf) ₂	L5	CHCl ₃	0	5min	88	52			
15	Ni(OTf) ₂	L6	CHCl ₃	0	5min	75	26			
16	Ni(OTf) ₂	L7	CHCl ₃	25	8h	trace				
17	Ni(OTf) ₂	L8	CHCl ₃	0	5min	75	-22			
18	Ni(OTf) ₂	Ll	CHCl ₃	25	5min	69	65			
19	Ni(OTf) ₂	L1	CHCl ₃	-20	1h	87	92			
20	Ni(OTf) ₂	L1	CHCl ₃	-40	3h	90	95			
21^d	Ni(OTf) ₂	L1	CHCl ₃	-40	5h	78	95			
22 ^e	Ni(OTf) ₂	L1	CHCl ₃	-40	12h	68	91			

^{*a*} Unless indicated otherwise, reactions of **1a** (0.15 mmol) and **2a** (0.1 mmol), were carried out under nitrogen in the presence of metal salt (0.01 mmol), chiral ligand (0.011 mmol) in solvent(1.5 mL); ^{*b*} Isolated yield; ^{*c*} Determined by chiral HPLC analysis; ^{*d*}5 mol% catalyst; ^{*e*}2.5 mol% catalyst.

4. The synthesis of 4*H*-chromenes

4.1 The typical asymmetric catalytic procedure

In a nitrogen-filled flask, a solution of ligand L1(3.67mg, 0.011mmol) and Ni(OTf)₂ (3.57mg, 0.01mmol) in CHCl₃ (1mL) was stirred at room temperature for 30min, then β -dicarbonyls (0.1mmol, 1.0eq) was added and stirred for another 30 min. The mixture was cooled to -40°C, and a solution of *o*-QMs (0.15mmol, 1.5eq, in 0.5mL of CHCl₃) was added by syringe and stirred at - 40°C. After completion(TLC monitoring), the solution was heated to 40°C and then *p*-TsOH (3.5mg, 0.02mmol, 0.20 equiv) was added, and stirred for 1 h, the solution was concentrated and purified by silica gel chromatography.

Ethyl (*S*)-8-(4-methoxyphenyl)-6-methyl-8H-[1,3]dioxolo[4,5-g]chromene-7-carboxylate (3aa).

The title compound was purified by silica gel chromatography (PE: EtOAc = 30: 1) to afford the product, slight yellow oil, 90% yield. $[\alpha]_D^{20} = -50.7$ (c = 0.41, CH₂Cl₂); 95% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 95 : 5, 0.5 mL/min, 254 nm; t (major) = 13.17 min, t (minor) = 12.40 min];

¹H NMR (300 MHz, CDCl₃) δ 7.18 – 7.06 (m, 2H), 6.84 – 6.72 (m, 2H), 6.52 (s, 1H), 6.42 (s, 1H), 5.86 (dd, *J* = 16.7, 1.4 Hz, 2H), 4.84 (s, 1H), 4.08 (qq, *J* = 7.1, 3.7 Hz, 2H), 3.74 (s, 3H), 2.44(s, 3H), 1.18 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.94, 159.26, 157.81, 146.28, 143.94, 143.53, 138.85, 128.37, 116.83, 113.41, 107.12, 105.30, 100.94, 97.55, 59.74, 54.84, 40.54, 19.07, 13.81. IR (film): ν = 3360, 2922, 2851, 1708, 1608, 1507, 1479, 1369, 1250, 1150, 1066, 1035, 936, 845, 705, 656, 554, 457 cm⁻¹; HRMS (ESI): m/z: calcd. for C₂₁H₂₀O₆⁺ [M-H]⁺: 367.1176; found: 367.1176.

Isopropyl (S)-8-(4-methoxyphenyl)-6-methyl-8H-[1,3]dioxolo[4,5-g]chromene-7-carboxylate (3ab).

The title compound was purified by silica gel chromatography (PE: EtOAc = 30: 1) to afford the product, colorless oil, 84% yield. $[\alpha]_D^{20}$ = -10.1 (c = 1.43, CH₂Cl₂); 91% ee, determined by HPLC analysis [Daicel Chiralcel AS-H column, *n*-hexane/*i*-PrOH = 95: 5, 0.5 mL/min, 254 nm; t (major) = 12.00 min, t (minor) = 11.00 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.17 – 7.06 (m, 2H), 6.84 – 6.70 (m, 2H),

6.51 (s, 1H), 6.42 (s, 1H), 5.85 (dd, J = 17.5, 1.4 Hz, 2H), 4.95 (m, 1H), 4.83 (s, 1H), 3.74 (s, 3H), 2.43 (s, 3H), 1.22 (d, J = 6.2 Hz, 3H), 1.04 (d, J = 6.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.71, 159.22, 158.11, 146.56, 144.19, 143.77, 139.22, 128.74, 117.07, 113.66, 107.46, 105.76, 101.22, 97.82, 67.38, 55.15, 40.85, 21.99, 21.59, 19.29. IR (film): ν =2953, 2921, 2852, 2360, 1712, 1508, 1480, 1457, 1377, 1231, 1199, 1151, 1061, 1040 cm⁻¹; HRMS (ESI): m/z: calcd. for

C₂₂H₂₂O₆⁺ [M-H]⁺: 381.1333; found: 381.1332.

Benzyl (*S*)-8-(4-methoxyphenyl)-6-methyl-8H-[1,3]dioxolo[4,5-g]chromene-7-carboxylate (3ac).

7.09 – 7.02 (m, 2H), 6.77 – 6.69 (m, 2H), 6.51 (s, 1H), 6.40 (s, 1H), 5.83 (dd, J = 17.3, 1.3 Hz, 2H), 5.06 (q, J = 10.3 Hz, 2H), 4.85 (s, 1H), 3.74 (s, 3H), 2.45 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.02, 160.25, 158.14, 146.60, 144.29, 143.67, 139.03, 136.08, 128.66, 128.34, 128.05, 127.90, 117.06, 113.77, 107.38, 105.21, 101.25, 97.86, 65.99, 55.15, 40.77, 19.51. IR (film): $\nu = 2920$, 2359, 1706, 1651,1608, 1507, 1477, 1378, 1321, 1231, 1192, 1147, 1033, 935, 843, 785, 697, 593, 545, 490 cm⁻¹; HRMS (ESI): m/z: calcd. for C₂₆H₂₂O₆⁺ [M+H]⁺: 431.1489; found: 431.1491.

Ethyl (*S*)-8-(4-methoxyphenyl)-6-propyl-8H-[1,3]dioxolo[4,5-g]chromene-7-carboxylate (3ad).

The title compound was purified by silica gel chromatography (PE: EtOAc = 30: 1) to afford the product: slightly yellow oil, 78% yield. = -45.2 (c = 1.36, CH₂Cl₂); 93% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90: 10, 1.0 mL/min, 254 nm; t (major) = 11.70 min, t (minor) = 10.68 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.18 –7.06 (m, 2H), 6.84 – 6.73 (m,

2H), 6.53 (s, 1H), 6.43 (s, 1H), 5.88 (d, J = 1.4 Hz, 1H), 5.83 (d, J = 1.4 Hz, 1H), 4.85 (s, 1H), 4.08 (qd, J = 7.1, 3.0 Hz, 2H), 3.74 (s, 3H), 2.94 – 2.71 (m, 2H), 1.78-1.65 (m, 2H), 1.19 (t, J = 7.1 Hz, 3H), 1.00 (t, J = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.07, 163.14, 158.13, 146.60, 144.21, 143.97, 139.18, 128.62, 117.23, 113.76, 107.41, 105.62, 101.23, 97.86, 60.05, 55.15, 41.01, 34.16, 21.01, 14.10, 13.88. IR (film): $\nu = 3054$, 2962, 2930, 1706, 1651, 1610, 1508, 1479, 1328, 1264, 1191, 1069, 1035, 939, 845, 735, 562 cm⁻¹; HRMS (ESI): m/z: calcd. for C₂₈H₂₄O₆⁺ [M-H]⁺: 395.1489; found: 395.1488.

Ethyl (*S*)-6-isopropyl-8-(4-methoxyphenyl)-8H-[1,3]dioxolo[4,5-g]chromene-7-carboxylate (3ae).

The title compound was purified by silica gel chromatography (PE: EtOAc = 30: 1) to afford the product, colorless oil, 65% yield. $[a]_{2}^{2}$ = -72.0 (c = 0.40, CH₂Cl₂); 92% ee, determined by HPLC analysis [Daicel Chiralcel AS-H column, *n*-hexane/*i*-PrOH =90:10, 1.0

mL/min, 254 nm; t (major) = 4.79 min, t (minor) = 4.25 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.18 – 7.06 (m, 2H), 6.84 –6.72 (m, 2H), 6.55 (s, 1H), 6.44 (s, 1H), 5.86 (dd, *J* = 15.1, 1.4 Hz, 2H), 4.83 (s, 1H), 4.07 (q, *J* = 6.9 Hz, 2H), 3.98-3.89 (m, 1H), 3.74 (s, 3H), 1.28 (t, *J* = 6.9 Hz, 3H), 1.18 (dt, *J* = 7.1, 3.7 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 167.15, 166.40, 158.15, 146.62, 144.18, 144.06, 139.17, 128.51, 117.27, 113.80, 107.32, 104.20, 101.23, 97.80, 60.06, 55.16, 41.15, 29.58, 19.90, 19.40, 14.08. IR (film): ν = 2964, 2929, 1706, 1650, 1611, 1507, 1479, 1440, 1320, 1247, 1150, 1081, 1034, 938, 843, 786, 583 cm⁻¹; HRMS (ESI): m/z: calcd. for C₂₈H₂₄O₆+ [M-H]⁺: 396.1489; found: 395.1487.

Ethyl (S)-6-(methoxymethyl)-8-(4-methoxyphenyl)-8H-[1,3]dioxolo[4,5-g]chromene-7carboxylate (3af).

The title compound was purified by silica gel chromatography (PE: EtOAc = 10: 1) to afford the product: slight yellow oil, 62% yield. $I^{(2)} = -55.37$ (c =0.91, CH₂Cl₂); 86% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90: 10, 0.8 mL/min, 254 nm; t (major) = 11.05 min, t (minor) = 9.34 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.16 – 7.09 (m, 2H), 6.83 – 6.73 (m, 2H),

6.62 (s, 1H), 6.41 (s, 1H), 5.87 (dd, J = 15.5, 1.2 Hz, 1H)., 4.89 (s, 1H), 4.62 (dd, J = 17.6 Hz, 12.6 Hz, 2H), 4.14-4.06 (m, 2H), 3.74 (s, 3H), 3.46 (s, 3H), 1.19 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.44, 158.32, 157.03, 146.77, 144.52, 143.77, 138.40, 128.80, 116.59, 113.86, 108.77, 107.36, 101.34, 98.18, 69.27, 60.50, 58.71, 55.17, 41.05, 14.06. IR (film): $\nu = 2929$, 2360, 1706, 1654, 1609, 1508, 1479, 1440, 1324, 1245, 1192, 1148, 1095, 1060, 1035, 936, 846, 790, 565 cm⁻¹; HRMS (ESI): m/z: calcd. for C₂₂H₂₃O₇⁺ [M+H]⁺: 399.1438; found: 399.1436.

Ethyl (S)-6-((benzyloxy)methyl)-8-(4-methoxyphenyl)-8H-[1,3]dioxolo[4,5-g]chromene-

7-carboxylate (3ag).

The title compound was purified by silica gel chromatography (PE: EtOAc = 10: 1) to afford the product: slight yellow oil, 63% yield. analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90:10, 0.8 mL/min, 254 nm; t (major) = 12.37 min, t (minor) = 11.19 min];

¹H NMR (300 MHz, CDCl₃) δ 7.40 – 7.28 (m, 5H), 7.16 – 7.08 (m, 2H), 6.84 – 6.73 (m, 2H), 6.61 (s, 1H), 6.41 (s, 1H), 5.86 (dd, *J* = 16.2, 1.4 Hz, 2H), 4.89 (s, 1H), 4.73(dd, *J* = 44.7, 12.9 Hz), 4.63(s, 2H), 4.06 (qd, *J* = 7.1, 1.4 Hz, 2H), 3.74 (s, 3H), 1.15 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.42, 158.30, 157.15, 146.76, 144.49, 143.80, 138.37, 138.08, 128.79, 128.31, 127.85, 127.82, 127.65, 125.75, 116.60, 113.85, 108.77, 107.36, 101.32, 98.15, 72.85, 67.08, 60.47, 55.15, 41.08, 14.02. IR (film): ν = 2922, 2359, 1704, 1653, 1609, 1507, 1478, 1439, 1367, 1324, 1243, 1192, 1148, 1060, 1034, 936, 846, 789, 698, 586 cm⁻¹; HRMS (ESI): m/z: calcd. for C₂₈H₂₇O₇⁺ [M+H]⁺: 475.1751; found: 475.1751.

Ethyl (S)-8-(4-methoxyphenyl)-6-styryl-8H-[1,3]dioxolo[4,5-g]chromene-7-carboxylate (3ah).

The title compound was purified by silica gel chromatography (PE: EtOAc = 30: 1) to afford the product: slightly yellow solid, 95% yield. Mp. 90-94°C, $[\alpha]_D^{30} = 0.049$ (c = 0.38, CH₂Cl₂); 85% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90 : 10, 1.0 mL/min, 254 nm; t (major) = 10.69 min, t (minor) = 21.11 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.07 (d, *J* =

16.0 Hz, 1H), 7.62 – 7.55 (m, 2H), 7.48 (d, J = 16.0 Hz, 1H), 7.43 –7.28 (m, 3H), 7.19–7.12 (m, 2H), 6.82 –6.74 (m, 2H), 6.70 (s, 1H), 6.49 (s, 1H), 5.89 (dd, J = 15.6, 1.4 Hz, 2H), 4.97 (s, 1H), 4.16 (q, J = 7.1 Hz, 2H), 3.74 (s, 3H), 1.27 (t, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.46, 157.97, 155.24, 146.51, 144.04, 143.56, 138.39, 136.12, 134.56, 128.49, 127.20, 119.83, 116.97, 113.56, 107.03, 101.04, 97.72, 60.15, 54.86, 41.23, 13.89. IR (film): $\Box = 3025$, 2922, 2851, 1697, 1584, 1508, 1479, 1441, 1341, 1239, 1195, 1150, 1075, 1036, 971, 939, 844, 792, 559 cm⁻¹; HRMS (ESI): m/z: calcd. for C₂₈H₂₄O₆+ [M]+: 455.1489; found: 455.1490.

Ethyl (S)-8-(4-methoxyphenyl)-6-phenyl-8H-[1,3]dioxolo[4,5-g]chromene-7-carboxylate (3ai).

The title compound was purified by silica gel chromatography (PE: EtOAc = 30: 1) to afford the product: white solid, 60% yield. Mp. 60-62°C, $10^{220} = -8.8$ (c = 0.79, CH₂Cl₂); 70% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 95: 5, 0.5 mL/min, 254 nm; t (major) = 20.22 min, t (minor) = 19.21 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.50 –7.39 (m, 5H), 7.27 – 7.22 (m,

3H), 6.85 - 6.78 (m, 2H), 6.60 (s, 1H), 6.49 (s, 1H), 5.89 (dd, J = 15.4, 1.4 Hz, 2H), 4.97 (s, 1H), 3.86 (q, J = 7.1 Hz, 2H), 3.76 (s, 3H), 0.84 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.18, 158.34, 158.05, 146.79, 144.52, 144.47, 138.50, 135.25, 129.42, 128.79, 128.71, 127.82, 116.97, 113.96, 107.47, 107.07, 101.35, 98.16, 60.13, 55.19, 41.73, 13.51. IR (film): $\nu = 2919$, 2849, 1695, 1608, 1508, 1478, 1442, 1369, 1338, 1243, 1161, 1076, 1034, 936, 843, 787, 698, 550 cm⁻¹; HRMS (ESI): m/z: calcd. for C₂₆H₂₃O₆⁺ [M+H]⁺: 431.1489; found: 431.1491.

Ethyl (S)-8-(4-methoxyphenyl)-6-(thiophen-2-yl)-8H-[1,3]dioxolo[4,5-g]chromene-7-carboxylate (3aj).

The title compound was purified by silica gel chromatography (PE: EtOAc = 30: 1) to afford the product, slightly yellow oil, 90% yield., $[\alpha]_D^{30} = 0.023$ (c = 0.6, CH₂Cl₂); 37% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90 : 10, 0.8 mL/min, 254 nm; t (major) = 12.92 min, t (minor) = 10.85 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.45 (d, *J* = 4.3 Hz), 7.24 – 7.15 (m),

7.10 - 7.00 (m), 6.87 - 6.76 (m), 6.63, 6.50 - 6.42 (m), 5.89 (dd, J = 13.8, 1.4 Hz), 4.95, 4.00 (q, J =

7.1 Hz), 3.76, 1.03 (t, J = 7.1 Hz).. ¹³C NMR (75 MHz, CDCl₃) δ 167.12, 158.46, 150.52, 146.88, 144.57, 137.84, 135.45, 129.96, 128.87, 128.04, 126.60, 116.91, 114.00, 107.55, 107.31, 101.39, 60.48, 55.21, 42.26, 13.76. IR (film): $\nu = 3104$, 2978, 2902, 1708, 1666, 1609, 1508, 1479, 1368, 1224, 1192, 1152, 1072, 1035, 936, 854, 795, 557 cm⁻¹; HRMS (ESI): m/z: calcd. for C₂₄H₂₁O₆⁺ [M+H]⁺: 437.1503; found: 437.1504.

(S)-1-(8-(4-methoxyphenyl)-6-methyl-8H-[1,3]dioxolo[4,5-g]chromen-7-yl)ethan-1-one (3ak).

The title compound was purified by silica gel chromatography (PE: EtOAc = 10: 1) to afford the product, slight yellow oil, 90% yield. = -59.7 (c = 1.43, CH₂Cl₂); 89% ee, determined by HPLC analysis [Daicel Chiralcel AS-H column, *n*-hexane/*i*-PrOH = 90: 10, 1.0 mL/min, 254 nm; t (major) = 26.25 min, t (minor) = 15.19 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.19 – 7.08 (m, 2H), 6.86 – 6.77 (m,

2H), 6.51 (s, 1H), 6.49 (s, 1H), 5.86 (dd, J = 18.7, 1.4 Hz, 2H), 4.84 (s, 1H), 3.75 (s, 3H), 2.41 (s, 3H), 2.15 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 199.04, 158.61, 158.45, 146.72, 144.29, 143.52, 138.31, 128.46, 117.23, 114.23, 113.73, 107.21, 101.31, 97.97, 55.20, 41.63, 30.04, 19.94. IR (film): $\nu = 2902$, 2359, 1681, 1644, 1606, 1582, 1506, 1476, 1428, 1377, 1322, 1230, 1197, 1149, 1031, 930, 82, 794, 609, 554, 450 cm⁻¹; HRMS (ESI): m/z: calcd. for C₂₀H₁₉O₅⁺ [M+H]⁺: 339.1227; found: 339.1227.

(S)-1-(6-isopropyl-8-(4-methoxyphenyl)-8H-[1,3]dioxolo[4,5-g]chromen-7-yl)-2methylpropan-1-one (3al).

The title compound was purified by silica gel chromatography (PE: EtOAc = 10: 1) to afford the product, slight yellow oil, 80% yield. $I_{12} = -48.3$ (c = 0.60, CH₂Cl₂); 93% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90: 10, 0.8 mL/min, 254 nm; t (major) = 12.76 min, t (minor) = 6.27 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.15 – 7.06 (m, 2H), 6.86 – 6.74 (m, 2H),

6.52 (s, 1H), 6.42 (s, 1H), 5.85 (dd, J = 15.1, 1.4 Hz, 2H), 4.81 (s, 1H), 3.75 (s, 3H), 3.26-3.17 (m, 1H), 2.93-2.84 (m, 1H), 1.31 (d, J = 6.8 Hz, 3H), 1.16 (d, J = 6.8 Hz, 3H), 0.97 (d, J = 7.0 Hz, 3H), 0.79 (d, J = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 207.79, 161.67, 158.46, 146.73, 144.13, 143.95, 137.88, 128.76, 116.74, 114.21, 111.97, 107.26, 101.24, 97.85, 55.19, 41.86, 37.69, 30.03, 20.32, 19.71, 19.24, 17.69. IR (film): $\nu = 2965$, 2929, 2360, 1683, 1608,1507, 1478, 1438, 1303, 1235, 1141, 1034, 934, 870, 835, 795, 559 cm⁻¹; HRMS (ESI): m/z: calcd. for C₂₄H₂₇O₅⁺ [M+H]⁺: 395.1853; found: 395.1857.

Ethyl (S)-6,7-dimethoxy-4-(4-methoxyphenyl)-2-methyl-4H-chromene-3-carboxylate (3ba).

The title compound was purified by silica gel chromatography (PE: EtOAc = 10: 1) to afford the product, slight yellow oil, 87% yield. $[a]_{2}^{20} = -16.8$ (c = 1.16, CH₂Cl₂); 84% ee, determined by

HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90: 10, 0.8 mL/min, 254 nm; t (major) = 9.19 min, t (minor) = 10.42 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.18 –7.07 (m, 2H), 6.82 – 6.73 (m, 2H), 6.58 (s, 1H), 6.44 (s, 1H), 4.90 (s, 1H), 4.09 (qd, J = 7.1, 2.5 Hz, 2H), 3.85 (s, 3H), 3.75 (s, 3H), 3.74 (s, 3H), 2.45 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.36, 159.53,

158.06, 148.32, 146.06, 143.19, 139.16, 128.75, 115.87, 113.70, 110.79, 105.94, 100.07, 60.03, 56.17, 55.99, 55.15, 40.49, 19.47, 14.15. IR (film): $\nu = 2932$, 2834, 1707, 1643, 1600, 1508, 1463, 1379, 1322, 1254, 1225, 1211, 1172, 1121, 1068, 1034, 970, 844, 767, 606, 554 cm⁻¹; HRMS (ESI): m/z: calcd. for C₂₂H₂₄O₆⁺ [M-H]⁺: 383.1489; found: 383.1488.

(S)-1-(6,7-dimethoxy-4-(4-methoxyphenyl)-2-methyl-4H-chromen-3-yl)ethan-1-one (3bi).

The title compound was purified by silica gel chromatography (PE: EtOAc = 10: 1) to afford the product: slight yellow oil, 79% yield. = -22.5 (c = 0.80, CH₂Cl₂); 63% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90: 10, 1.0 mL/min, 254 nm; t (major) = 12.16 min, t (minor) = 12.32 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.19 – 7.11 (m, 2H), 6.85 – 6.73 (m,

2H), 6.56 (s, 1H), 6.50 (s, 1H), 4.90 (s, 1H), 3.83 (s, 3H), 3.75 (s, 3H), 3.75 (s, 3H), 2.41 (s, 3H), 2.16 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 199.20, 158.45, 158.38, 148.46, 146.04, 142.80, 138.33, 128.51, 115.89, 114.20, 114.03, 110.66, 100.18, 77.25, 77.00, 76.75, 56.23, 56.00, 55.19, 41.27, 30.05, 20.00. IR (film): ν = 2999, 2930, 2835, 1680, 1629, 1582, 1507, 1441, 1378, 1356, 1322, 1252, 1211, 1173, 1121, 1033, 936, 871, 842, 762, 651, 599, 557 cm⁻¹; HRMS (ESI): m/z: calcd. for C₂₁H₂₃O₅⁺ [M+H]⁺: 355.1540; found: 355.1539.

(S)-1-(2-isopropyl-6,7-dimethoxy-4-(4-methoxyphenyl)-4H-chromen-3-yl)-2-methylpropan-1-one (3bj).

The title compound was purified by silica gel chromatography (PE: EtOAc = 10: 1) to afford the product, slight yellow oil, 55% yield. $\boxed{m_{D}} = -32.1$ (c = 1.27, CH₂Cl₂); 74% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90: 10, 0.8 mL/min, 254 nm; t (major) = 6.96 min, t (minor) = 8.08 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.18 – 7.04 (m, 2H), 6.86 – 6.76 (m, 2H),

6.56 (s, 1H), 6.43 (s, 1H), 4.87 (s, 1H), 3.85 (s, 3H), 3.75 (s, 3H), 3.73 (s, 3H), 3.22 (m, 1H), 2.91 (m, 1H), 1.33 (d, J = 6.8 Hz, 3H), 1.18 (d, J = 6.8 Hz, 3H), 0.97 (d, J = 7.0 Hz, 3H), 0.80 (d, J = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 207.95, 161.38, 158.39, 148.56, 145.72, 143.35, 137.93, 128.83, 115.35, 114.17, 112.18, 110.92, 100.06, 56.29, 56.01, 55.16, 41.49, 37.72, 30.08,

20.37, 19.78, 19.26, 17.64. IR (film): $\nu = 2966$, 2933, 1682, 1608, 1508, 1465, 1303, 1264, 1225, 1192, 1129, 1056, 1033, 944, 842, 732, 560 cm⁻¹; HRMS (ESI): m/z: calcd. for C₂₅H₃₁O₅⁺ [M+H]⁺: 411.2166; found: 411.2164.

4.2 The reaction of vinyl o-quinone methide with β -keto esters.

In the nitrogen-filled flask, a solution of ligand L1(3.67mg, 0.011mmol) and Ni(OTf)₂ (3.57mg, 0.01mmol) in CHCl₃(1.5mL) was stirred at room temperature for 30min, ethyl acetoacetate (0.1mmol, 1.0eq) were added and stirred at room temperature for another 30 min. The mixture was cooled to -20 °C followed by addition of vinyl *o*-QMs (0.15mmol, 1.5eq), subsequently stirred at -20°C. After completion of the reaction, the solution was warmed to 40 °C and *p*-TsOH (3.5mg, 0.02mmol, 0.20 eq.) was added. After stirring for 1h, the solution was concentrated and purified by silica gel chromatography.

Ethyl (S, E)-6-methyl-8-styryl-8H-[1,3]dioxolo[4,5-g]chromene-7-carboxylate (3ca).

The title compound was purified by silica gel chromatography (Petroleum: EtOAc = 50: 1) to afford the product as a slight yellow oil, 74% yield. $\boxed{m^2} = -176.5$ (c = 0.84, CH₂Cl₂); 88% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 95: 5, 0.5 mL/min, 254 nm; t (major) = 12.22 min, t (minor) = 11.37 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.35 – 7.13 (m, 5H), 6.59

(s, 1H), 6.52 (s, 1H), 6.31 (d, J = 15.7 Hz, 1H), 6.13 (dd, J = 15.7, 7.6 Hz, 1H), 5.92 (dd, J = 3.4, 1.3 Hz2H), 4.51 (d, J = 7.6 Hz, 1H), 4.31 – 4.10 (m, 2H), 2.40 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.25, 160.52, 146.94, 144.53, 144.29, 137.09, 132.83, 129.09, 128.42, 127.25, 126.32, 115.21, 107.57, 103.85, 101.36, 98.03, 60.35, 60.17, 39.05, 19.46, 14.36. IR (film): $\nu = 2916$, 1707, 1651, 1618, 1500, 1480, 1441, 1379, 1324, 1231, 1193, 1150, 1066, 1037, 963, 938, 857, 781, 748, 693, 500 cm⁻¹; HRMS (ESI): m/z: calcd. for C₂₂H₂₁O₅⁺ [M+H]⁺: 365.1284, found: 365.1287.

Ethyl (*S*, *E*)-6-methyl-8-(4-methylstyryl)-8H-[1,3]dioxolo[4,5-g]chromene-7-carboxylate (3da).

The title compound was purified by silica gel chromatography (PE: EtOAc = 50: 1) to afford the product, white solid, 70% yield. Mp. 48-52°C, \boxed{a} = -137.4(c = 0.73, CH₂Cl₂); 90% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, n-hexane/i-PrOH = 90: 10, 0.8 mL/min, 254 nm; t (major) = 22.37 min, t (minor) = 20.35 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.19 (d, *J* = 8.1 Hz, 2H), 7.06 (d,

J = 7.9 Hz, 2H), 6.58 (s, 1H), 6.52 (s, 1H), 6.28 (d, J = 15.7 Hz, 1H), 6.07 (dd, J = 15.7, 7.7 Hz, 1H), 5.2 (dd, J = 3.2, 1.3Hz, 2H), 4.49 (d, J = 7.7 Hz, 1H), 4.32 – 4.10 (m, 2H), 2.40 (s, 3H), 2.30 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H).¹³C NMR (75 MHz, CDCl₃) δ 167.30, 160.37, 146.89, 144.51,

144.26, 137.03, 134.29, 131.84, 129.11, 128.96, 126.22, 115.36, 107.61, 103.96, 101.34, 98.00, 60.14, 39.05, 21.11, 19.43, 14.36. IR (film): $\nu = 2918$, 1708, 1652, 1619, 1501, 1480, 1379, 1323, 1231, 1194, 1151, 1067, 1038, 972, 938, 857, 810, 780, 507, 456 cm⁻¹; HRMS (ESI): m/z: calcd. for C₂₃H₂₃O₅⁺ [M+H]⁺: 379.1540; found: 379.1539.

Ethyl (*S*, *E*)-8-(4-methoxystyryl)-6-methyl-8H-[1,3]dioxolo[4,5-g]chromene-7-carboxylate (3ea).

The title compound was purified by silica gel chromatography (PE: EtOAc = 50: 1) to afford the product: white solid, 58% yield. Mp. 78-81°C, \boxed{a} = -86.8 (c = 0.80, CH₂Cl₂); 80% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 90: 10, 0.8 mL/min, 254 nm; t (major) = 19.66 min, t (minor) = 10.59 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.25 – 7.19 (m, 2H), 6.83 – 6.76

(m, 2H), 6.59 (s, 1H), 6.52 (s, 1H), 6.25 (d, J = 15.6 Hz, 1H), 5.99 (dd, J = 15.6, 7.7 Hz, 1H), 5.92 (dd, J = 3.0, 1.3 Hz, 2H), 4.48 (d, J = 7.7 Hz, 1H), 4.32 – 4.09 (m, 2H), 3.78 (s, 3H), 2.39 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.33, 160.31, 159.02, 146.87, 144.52, 144.26, 130.81, 129.90, 128.51, 127.45, 115.48, 113.89, 107.60, 104.07, 101.34, 97.99, 60.14, 55.27, 39.03, 19.44, 14.37. IR (film): $\nu = 2916$, 2848, 1706, 1651, 1607, 1510, 1480, 1440, 1379, 1263, 1193, 1150, 1067, 1036, 937, 895, 823, 732, 522 cm⁻¹;HRMS (ESI): m/z: calcd. for C₂₃H₂₃O₆⁺ [M+H]⁺: 395.1489; found: 395.1490.

Ethyl (S, E)-8-(4-fluorostyryl)-6-methyl-8H-[1,3]dioxolo[4,5-g]chromene-7-carboxylate (3fa).

The title compound was purified by silica gel chromatography (PE: EtOAc = 50: 1) to afford the product: white solid, 82% yield. Mp. 43-45°C, $\boxed{100}$ = -116.4 (c = 0.97, CH₂Cl₂); 92% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 90: 10, 0.8 mL/min, 254 nm; t (major) = 12.49 min, t (minor) = 7.81 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.31 –7.21 (m, 2H), 6.99 – 6.89

(m, 2H), 6.58 (s, 1H), 6.53 (s, 1H), 6.26 (d, J = 15.7 Hz, 1H), 6.05 (dd, J = 15.7, 7.6 Hz, 1H), 5.92 (dd, J = 2.9, 1.3 Hz, 2H), 4.50 (d, J = 7.6 Hz, 1H), 4.32 – 4.11 (m, 2H), 2.40 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.22, 162.12 (d, J = 246.8 Hz), 160.62, 146.97, 144.55, 144.32, 133.23 (d, J = 3.3 Hz), 132.60 (d, J = 2.2 Hz), 127.89, 127.77 (d, J = 7.9 Hz), 115.28 (d, J = 21.6 Hz), 107.49, 103.80, 101.38, 98.05, 60.19, 38.98, 19.49, 14.36. IR (film): $\nu = 2980$, 2917, 2849, 1707, 1652, 1619, 1507, 1480, 1441, 1379, 1324, 1228, 1194, 1151, 1067, 1038, 972, 938, 824, 780, 514 cm⁻¹; HRMS (ESI): m/z: calcd. for C₂₂H₂₀FO₅⁺ [M+H]⁺: 383.1289; found: 383.1288.

Ethyl (*S*,*E*)-8-(4-chlorostyryl)-6-methyl-8H-[1,3]dioxolo[4,5-g]chromene-7-carboxylate (3ga). The title compound was purified by silica gel chromatography (PE: EtOAc = 50: 1) to afford the

product, colorless oil, 82% yield. I = -125.3 (c = 0.83, CH₂Cl₂); 88% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 90: 10, 0.8 mL/min, 254 nm; t (major) = 13.39 min, t (minor) = 8.54 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.22 (s, 4H), 6.57 (s, 1H), 6.53 (s, 1H), 6.25 (d, J = 15.7 Hz, 1H), 6.11 (dd, J = 15.7, 7.4 Hz, 1H), 5.93 (dd, J = 2.8, 1.3 Hz, 2H), 4.50 (d, J = 7.4

Hz, 1H), 4.32 - 4.11 (m, 2H), 2.40 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.18, 160.74, 147.02, 144.57, 144.35, 135.61, 133.50, 132.85, 128.55, 127.88, 127.52, 114.96, 107.48, 103.68, 101.40, 98.09, 60.21, 39.01, 19.51, 14.37. IR (film): ν =2980, 2918, 2849, 1707, 1652, 1619, 1480, 1441, 1379, 1324, 1231, 1195, 1151, 1067, 1038, 972, 938, 857, 817, 735, 503 cm⁻¹; HRMS (ESI): m/z: calcd. for C₂₂H₁₉ClO₅⁺ [M-H]⁺: 397.0837; found: 397.0837.

Ethyl (*S*, *E*)-6-methyl-8-(3-methylstyryl)-8H-[1,3]dioxolo[4,5-g]chromene-7-carboxylate (3ha).

The title compound was purified by silica gel chromatography (PE: EtOAc = 50: 1) to afford the product as a slight yellow oil, 59% yield. $I_{10} I_{10} I$

1H), 6.58 (s, 1H), 6.52 (s, 1H), 6.28 (d, J = 15.7 Hz, 1H), 6.11 (dd, J = 15.7, 7.7 Hz, 1H), 5.92 (dd, J = 3.4, 1.3 Hz, 2H), 4.50 (d, J = 7.6 Hz, 1H), 4.21 (qq, J = 10.8, 7.1 Hz, 2H), 2.40 (s, 3H), 2.29 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.26, 160.44, 146.91, 144.52, 144.28, 137.95, 137.01, 132.62, 129.14, 128.32, 128.05, 126.96, 123.53, 115.27, 107.58, 103.89, 101.34, 98.00, 60.16, 39.06, 21.30, 19.44, 14.36. IR (film): $\nu = 2917$, 2849, 1708, 1652, 1619, 1480, 1440, 1379, 1323, 1231, 1194, 1151, 1068, 1038, 973, 938, 859, 780, 439 cm⁻¹; HRMS (ESI): m/z: calcd. for C₂₃H₂₂O₅⁺ [M-H]⁺: 377.1384; found: 377.1383.

Ethyl (*S*, *E*)-8-(2-methoxystyryl)-6-methyl-8H-[1,3]dioxolo[4,5-g]chromene-7-carboxylate (3ia).

(m, 1H), 6.90 - 6.79 (m, 2H), 6.73 (d, J = 15.7 Hz, 1H), 6.61 (s, 1H), 6.51 (s, 1H), 6.07 (dd, J = 15.8, 8.3 Hz, 1H), 5.91 (dd, J = 4.1, 1.3 Hz, 2H), 4.52 (d, J = 8.3 Hz, 1H), 4.30 - 4.09 (m, 2H), 3.82 (s, 3H), 2.40 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.34, 160.07,

156.70, 146.83, 144.37, 144.21, 133.16, 128.25, 126.66, 126.09, 123.89, 120.49, 115.52, 110.82, 107.72, 104.01, 101.29, 97.95, 60.12, 55.37, 39.66, 19.32, 14.16. IR (film): $\nu = 2918$, 2849, 1707, 1652, 1619, 1480, 1438, 1379, 1323, 1244, 1194, 1151, 1067, 1037, 973, 937, 857, 708, 752, 582 cm⁻¹; HRMS (ESI): m/z: calcd. for C₂₃H₂₃O₆⁺ [M+H]⁺: 395.1489; found: 395.1489.

Ethyl (*S*, *E*)-6-methyl-8-(2-(thiophen-2-yl)vinyl)-8H-[1,3]dioxolo[4,5-g]chromene-7-carboxylate (3ja).

The title compound was purified by silica gel chromatography (PE: EtOAc = 50: 1) to afford the product, white solid, 56% yield. Mp. 67-70°C, \boxed{a} = -164.0 (c = 0.71, CH₂Cl₂); 90% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, n-hexane/i-PrOH = 95: 5, 0.5 mL/min, 254 nm; t (major) = 13.04 min, t (minor) = 12.36 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.08 (dt, *J* = 5.0, 0.9 Hz, 1H),

6.97 – 6.84 (m, 2H), 6.58 (s, 1H), 6.52 (s, 1H), 6.41 (d, J = 15.6 Hz, 1H), 5.99 (dd, J = 15.5, 7.6 Hz, 1H), 5.93 (dd, J = 1.7, 1.3 Hz, 2H), 4.47 (d, J = 7.6 Hz, 1H), 4.36 –4.09 (m, 2H), 2.40 (d, J = 0.7 Hz, 3H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.15, 160.72, 146.98, 144.54, 144.31, 142.22, 132.57, 127.17, 125.29, 123.75, 122.41, 114.91, 107.51, 103.61, 101.37, 98.03, 60.19, 38.78, 19.49, 14.34. IR (film): $\nu = 2917$, 2849, 1708, 1651, 1619, 1480, 1441, 1379, 1333, 1231, 1196, 1151, 1067, 1037, 938, 855, 780, 423 cm⁻¹; HRMS (ESI): m/z: calcd. for C₂₀H₁₈O₅S⁺ [M-H]⁺: 369.0791; found: 369.0789.

Ethyl (*S*, *E*)-6-methyl-8-(2-(naphthalen-1-yl)vinyl)-8H-[1,3]dioxolo[4,5-g]chromene-7-carboxylate (3ka).

Hz, 1H), 7.71 (d, J = 8.2 Hz, 1H), 7.47 (m, 3H), 7.36 (t, J = 7.7 Hz, 1H), 7.07 (d, J = 15.3 Hz, 1H), 6.68 (s, 1H), 6.55 (s, 1H), 6.16 (dd, J = 15.4, 7.7 Hz, 1H), 5.92 (d, J = 8.1 Hz, 2H), 4.65 (d, J = 7.7 Hz, 1H), 4.25 (qq, J = 11.0, 7.2 Hz, 2H), 2.43 (s, 3H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.31, 160.53, 146.97, 144.56, 144.35, 135.97, 134.80, 133.57, 131.20, 128.46, 127.61, 126.30, 125.87, 125.63, 125.51, 123.71, 115.21, 107.55, 103.89, 101.38, 98.10, 60.25, 39.43, 19.49, 14.41. IR (film): $\nu = 2925$, 1707, 1652, 1619, 1501, 1480, 1440, 1379, 1332, 1231, 1194, 1151, 1065, 1037, 972, 938, 859, 799, 779, 410 cm⁻¹; HRMS (ESI): m/z: calcd. for C₂₆H₂₃O₅⁺ [M+H]⁺: 415.1540; found: 415.1543.

4.3 Synthesis of (8-(4-methoxyphenyl)-8H-[1, 3]dioxolo[4,5-g]chromen-7-yl)methanol (4).

4.4 Synthesis of 7-(azidomethyl)-8-(4-methoxyphenyl)-6-methyl-8H-[1,3]dioxolo[-

4, 5-g]chromene (5)

4.5 Synthesis of 9-(4-methoxyphenyl)-6,9-dihydro-8H-[1,3]dioxolo[4,5-g]furo-

[3,4-b]chromen-8-one (3ak).

In the nitrogen-filled flask, a solution of ligand L1 (3.67mg, 0.011mmol) and Ni(OTf)₂ (3.57mg, 0.01mmol) in CHCl₃(1mL) was stirred at room temperature for 30min, followed by added **2k** (0.1mmol, 1.0eq) and stirred for another 30 min. After the mixture was cooled to -55°C, a solution of *o*-QMs **1a** (0.15mmol, 1.5eq.) in CHCl₃ (0.5mL) was added over 10min, and stirred at -55°C. After completion of the reaction, the solution was heated to 40°C and *p*-TsOH (3.5mg, 0.02mmol, 0.20eq.) was added. After stirring for 12h at this temperature, the solution was concentrated and purified by silica gel chromatography to afford **3ak** (25.4mg, 75% yield) as slight yellow solid. for f = -97.4 (c 1.02, CH₂Cl₂); 92% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 254 nm; t (major) = 19.29 min, t (minor) = 27.36 min]; ¹H NMR (500 MHz, CDCl₃) δ 7.16–7.07 (m, 2H), 6.87–6.78 (m, 2H), 6.63 (s, 1H), 6.45 (s, 1H), 5.94 (dd, J = 14.8, 1.3 Hz, 2H), 4.81 (dd, J = 15.2, 7.8 Hz, 2H), 4.80 (s, 1H), 3.77 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.82, 167.90, 158.74, 147.43, 145.55, 144.66, 135.22, 129.30, 115.75, 114.10, 108.97, 103.59, 101.91, 98.49, 65.50, 55.24, 37.52; IR (film): $\nu = 2921$, 1760, 1694, 1609, 1508, 1480, 1405, 1346, 1303, 1245, 1174, 1137, 1030, 1009, 933, 867, 849, 788, 767, 735, 608, 570, 526 cm⁻¹; HRMS (ESI): m/z: calcd. for C₁₉H₁₅O₆+ [M+H]⁺: 339.0863, found: 339.0851.

5. NMR Spectra

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -. 171 (ppm)

0.00

OMe CO2Et OCO2Et OBn

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -f1 (ppm)

∠ 1.06 √ 1.03 1.01

411111111111111111111111111111111111111	5833	8
ト ア ア ア ア ア ア ア ア ア ア ア ア の の の の の の の	~ ~ ~	0
	\leq	I.

8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	39	30 32	8
レレレレンのののののののののののののののののののも444444444444444	2		0
	1	\leq	I

8,04 8,02 1,22 1,22 1,22 1,23 1,23 1,24 1,23 1,24	4 65 4 4 26 4 4 26 4 4 28 4 27 4 22 4 22 4 22 4 22 4 22 4 22 4 22	2.43	1.33	0.0
When the second of the second	\lor	- T	\checkmark	Ĩ

6. HPLC Charts of the Products

Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 95 : 5, 0.5 mL/min, 254 nm; t (major) = 13.17 min, t (minor) = 12.40 min; 95% ee.

Daicel Chiralcel AS-H column, *n*-hexane/*i*-PrOH = 95: 5, 0.5 mL/min, 254 nm; t (major) = 12.00 min, t (minor) = 11.00 min; 91% ee.

Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90: 10, 1.0 mL/min, 254 nm; t (major) = 20.09 min, t (minor) = 18.97 min; 90% ee.

Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90: 10, 1.0 mL/min, 254 nm; t (major) = 11.70 min, t (minor) = 10.68 min; 93% ee.

Daicel Chiralcel AS-H column, *n*-hexane/*i*-PrOH = 90: 10, 1.0 mL/min, 254 nm; t (major) = 4.79 min, t (minor) = 4.25 min; 92% ee.

Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90: 10, 0.8 mL/min, 254 nm; t (major) = 11.05 min, t (minor) = 9.34 min; 86% ee.

Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90: 10, 0.8 mL/min, 254 nm; t (major) = 12.37 min, t (minor) = 11.19 min, 91% ee.

Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90 : 10, 1.0 mL/min, 254 nm; t (major) = 10.69 min, t (minor) = 21.11 min, 85% ee.

Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 95: 5, 0.5 mL/min, 254 nm; t (major) = 20.22 min, t (minor) = 19.21 min; 70% ee.

Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90 : 10, 0.8 mL/min, 254 nm; t (major) = 12.92 min, t (minor) = 10.85 min, 37% ee.

Daicel Chiralcel AS-H column, *n*-hexane/*i*-PrOH = 90: 10, 1.0 mL/min, 254 nm; t (major) = 26.25 min, t (minor) = 15.19 min; 89% ee.

Daicel AD-H column, *n*-hexane/*i*-PrOH = 90: 10, 0.8 mL/min, 254 nm; t (major) = 12.76 min, t (minor) = 6.27 min; 93% ee.

Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90: 10, 0.8 mL/min, 254 nm; t (major) = 9.19 min, t (minor) = 10.42 min; 84% ee.

Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90: 10, 1.0 mL/min, 254 nm; t (major) = 12.16 min, t (minor) = 12.32 min; 63% ee.

Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90: 10, 0.8 mL/min, 254 nm; t (major) = 6.96 min, t (minor) = 8.08 min; 74% ee.

Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 95: 5, 0.5 mL/min, 254 nm; t (major) = 12.22 min, t (minor) = 11.37 min; 88% ee.

Daicel Chiralcel OD-H column, n-hexane/i-PrOH = 90: 10, 0.8 mL/min, 254 nm; t (major) = 22.37 min, t (minor) = 20.35 min; 90% ee.

Daicel AD-H column, n-hexane/i-PrOH = 90: 10, 0.8 mL/min, 254 nm; t (major) = 19.66 min, t (minor) = 10.59 min; 80% ee.

Daicel AD-H column, n-hexane/i-PrOH = 90: 10, 0.8 mL/min, 254 nm; t (major) = 12.49 min, t (minor) = 7.81 min; 92% ee.

Daicel AD-H column, n-hexane/i-PrOH = 90: 10, 0.8 mL/min, 254 nm; t (major) = 13.39 min, t (minor) = 8.54 min; 88% ee.

Daicel Chiralcel OD-H column, n-hexane/i-PrOH = 98: 2, 0.3 mL/min, 254 nm; t (major) = 22.12 min, t (minor) = 20.12 min; 91% ee.

Daicel Chiralcel OD-H column, n-hexane/i-PrOH = 90: 10, 0.8 mL/min, 254 nm; t (major) = 8.71 min, t (minor) = 7.32 min; 87% ee.

Daicel Chiralcel OD-H column, n-hexane/i-PrOH = 95: 5, 0.5 mL/min, 254 nm; t (major) = 13.04 min, t (minor) = 12.36 min; 90% ee.

Daicel Chiralcel OD-H column, n-hexane/i-PrOH = 90: 10, 0.8 mL/min, 254 nm; t (major) = 10.18 min, t (minor) = 8.41 min; 92% ee.

mAU QМе 600 -500 -55 ΟН 400 -- 300 -200 -- 100 11.914 0 14 10 12 # Time Width Area Height Area% 7.547 0.2993 9021.9658 469.2894 97.4273 1 2 11.914 0.4650 238.2393 8.5397 2.5727 mAl OMe 600 -500 -ОН 552 400 -300 -200 -100 -0 12 14 10 Time Width Height Area% # Area 1 7.552 0.2900 8029.5938 427.7153 50.3474 2 11.764 0.44887918.7866 271.9067 49.6526

Daicel Chiralcel OD-H column, n-hexane/i-PrOH = 80: 20, 1.0 mL/min, 254 nm; t (major) = 7.55 min, t (minor) = 11.91 min; 95% ee.

Daicel Chiralcel OD-H column, n-hexane/i-PrOH = 90: 10, 0.8 mL/min, 254 nm; t (major) = 9.50 min, t (minor) = 8.00 min; 90% ee.

Daicel Chiralcel OD-H column, n-hexane/i-PrOH = 80: 20, 1.0 mL/min, 254 nm; t (major) = 19.29 min, t (minor) = 27.36 min; 92% ee.

The HPLC chart for the scale-up synthesis of 3aa

Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 95 : 5, 0.5 mL/min, 254 nm; t (major) = 13.27 min, t (minor) = 12.48 min; 95% ee.

7. The structure of 3ab by X-ray diffraction analysis

Table 1: Crystal data and structure refinement for (S)-3ae (CCDC 1941671)

Identification code	exp_6007
Empirical formula	$C_{22}H_{22}O_6$
Formula weight	382.39
Temperature / K	110.1(3)
Crystal system	monoclinic
Space group	P21
a / Å, b / Å, c / Å	21.7453(6), 10.7363(2), 25.2540(7)
α /°, β /°, γ /°	90, 106.562(3), 90
Volume / Å ³	5651.3(3)
Ζ	12
$ ho_{calc}$ / mg mm ⁻³	1.348
μ / mm^{-1}	0.810
F(000)	2424
Crystal size / mm ³	$0.350\times0.280\times0.080$
2Θ range for data collection	7.326 to 142.55°
Index ranges	$\text{-26} \le h \le 25, \text{-12} \le k \le 13, \text{-27} \le l \le 30$
Reflections collected	62103
Independent reflections	19967[R(int) = 0.0347 (inf-0.9Å)]
Data/restraints/parameters	19967/1/1537
Goodness-of-fit on F ²	1.060
Final R indexes [I> 2σ (I) i.e. F ₀ > 4σ (F ₀)]	$R_1 = 0.0615, wR_2 = 0.1652$
Final R indexes [all data]	$R_1 = 0.0649, wR_2 = 0.1688$
Largest diff. peak/hole / e Å ⁻³	0.588/-0.321
Flack Parameters	0.06(5)
Completeness	0.9993

8. References:

- 1. Jurd, L. Teterhedron., 1977, 33, 163-168.
- 2. (a) Luan, Y; Schaus, S. E. J. Am. Chem. Soc., 2012, 134, 19965-19968. (b) Lian, X.-L; Adili, A;
- Liu, B; Tao, Z.-L; Han, Z.-Y. Org. Biomol. Chem., 2017, 15, 3670-3673.