Supplementary Information

Dihydro phenylquinazolinone based novel two-in-one colorimetric chemosensor for Nickel(II) and Copper(II) and its copper complex for fluorescent colorimetric nanomolar detection of cyanide anion

Meman Sahu,^a Amit Kumar Manna,^a Shubhamoy Chowdhury^b and Goutam Kumar Patra^a*

^aDepartment of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G), India

^bDepartment of Chemistry, Gour Banga University, Malda, West Bengal 732 103, India

Fig. S1. Mass spectra of L

Fig. S2. IR spectra of L.

Fig. S3. Partial ¹H-NMR spectra of L in DMSO-d₆.

Fig. S4. ¹³C-NMR spectra of L in DMSO-d₆.

Fig. S5: Jobs Plot.

Fig. S6. Association constants of L towards (i) Ni^{2+} and (ii) Cu^{2+} ions.

Fig. S7. ESI-Mass spectra of (a) L-Ni²⁺ and (b) L-Cu²⁺complexes.

Fig. S8. FTIR spectra of [NiL(OH)] (1) and $[CuL(OCH_3)]$ (2).

Fig. S9. Fluorometric detection limit of L+Cu²⁺ towards CN⁻ ion.

Fig. S10. UV-Vis absorption response of probe $L+Cu^{2+}(10 \ \mu\text{M})$ in methanol-*tris*-HCl buffer (1:1 v/v) upon addition of CN⁻ anions (5 equiv.).

Fig. S11. Reversibility of L+Cu²⁺ towards CN⁻.

Fig. S12. Time responses of L towards Cu^{2+} and Ni^{2+} .

Fig. S13. Time responses of $L + Cu^{2+}$ towards CN⁻.

Fig. S14. Geometry optimized structure of L, [NiL(OH)](1) and [CuL(OCH₃)] (2).

Chemosensor/Material	Method used	LOD	Reference
Biometal organic Framework	Fluorescent turn on	1.9x10 ⁻⁸	1
Zn-coordination Polymer	Fluorescent turn off	9.0x10 ⁻⁶	2
Gold nanocluster	Fluorescent turn off	2.0x10 ⁻⁷	3
Phenothiazine derivative	Fluorescent turn off	3.2x10 ⁻⁹	4
Naphthoquinone-indole	Fluorescent turn on	2.1x10 ⁻⁹	5
ensembles			
Dihydro	Fluorescent turn on	4.0x10 ⁻⁸	Present
phenylquinazolinone			study

Table S1 Recent chemosensor	/ materials for detection of CN ⁻
-----------------------------	--

Table S2 Selected bond parameters for geometry optimized structure	es of [NiL(OH)] (1) and
$[CuL(OCH_3)]$ (2).	

Bond Parameter	Optimized [NiL(OH)] (1)	Bond Parameter	Optimized			
			$[CuL(OCH_3)](2)$			
Bond length (Å)						
Ni1-O001	1.85077	Cu1-O001	1.94818			
Ni1-O002	1.91286	Cu1-O002	2.09329			
Ni1-O003	1.83519	Cu1-O003	1.85210			
Ni1-N005	1.89700	Cu1-N005	2.06074			
C00A-O001	1.31071	C00A-O001	1.29399			
O002-C00G	1.26594	O002-C00G	1.24454			
N005-C00H	1.47200	N005-C00H	1.46496			
N004-N005	1.39162	N004-N005	1.38971			
Bond angle (⁰)						
O001-Ni1-O003	90.02333	O001-Cu1-O003	99.24156			
O001- Ni1-N005	95.50909	O001-Cu1-N005	91.02902			
O002- Ni1-N005	83.09986	O002-Cu1-N005	76.91589			
0002- Ni1-0003	91.36677	O002-Cu1-O003	92.83055			

0001- Ni1-0002	178.58167	O001-Cu1-O002	167.88140
0003- Ni1-N005	174.46376	O003-Cu1-N005	169.70270

References

- A. Karmakar, B. Joarder, A. Mallick, P. Samanta, A. V. Desai, S. Basu and S. K. Ghosh, Aqueous phase sensing of cyanide ions using a hydrolytically stable metalorganic framework, *Chem. Commun.*, 2017, 53, 1253–1256.
- L. D. Rosales-Vázquez, J. Valdes-García, I.J. Bazany-Rodríguez, J. M. Germán-Acacio, D. Martínez-Otero, A. R. Vilchis-Néstor, R. Morales-Luckie, V. Sánchez-Mendieta and A. Dorazco-González, A sensitive photoluminescent chemosensor for cyanide in water based on a zinc coordination polymer bearing ditert-butyl-bipyridine, *Dalton Trans.*, 2019,48, 12407-12420
- Y. Liu, K. Ai, X. Cheng, L. Huo and L. Lu, Gold-nanoclusterbased fluorescent sensors for highly sensitive and selective detection of cyanide in water, *Adv. Funct. Mater.*, 2010, 20, 951–956
- F.A. M. Al-Zahrani, R.M. El-Shishtawy, A.M. Asiri, A.M. Al-Soliemy, K.A. Mellah, N.S. E. Ahmed and A. Jedid, A new phenothiazine-based selective visual and fuorescent sensor for cyanide, *BMC Chemistry*, 2020, 14, 2.
- P. Jayasudha, R. Manivannan, S. Ciattini, L. Chelazzi and K. P. Elango, Selective sensing of cyanide in aqueous solution by quinone-indole ensembles – quantitative effect of substituents on the HBD property of the receptor moiety, *Sens. Actuators B*, 2017, 242, 736–745.