Supplementary Information (SI)

Bridging-Arylene Effects on Spectroscopic and Photophysical Properties of Arylborane–Dipyrrinato Zinc(II) Complexes

Koyo Takaki,^{*a*} Eri Sakuda,^{*a*} Akitaka Ito,^{*b*} Shinnosuke Horiuchi,^{*a*} Yasuhiro Arikawa^{*a*} and Keisuke Umakoshi^{*a*}*

^aDivision of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan ^bGraduate School of Engineering, Kochi University of Technology, Miyanokuchi 185, Tosayamada, Kami, Kochi 782-8502, Japan

Figure S1. ¹H NMR spectra of 5-{4-(dimesitylboryl)phenyl}dipyrrin in CDCl₃ at 298 K.

Figure S2. ¹H NMR spectra of **3** in CDCl₃ at 298 K.

Figure S3. ¹H (top) and ¹³C{¹H} NMR spectra (bottom) of **ZnBph** in CDCl₃ at 298 K.

Figure S4. ¹H (top) and ¹³C{¹H} NMR spectra (bottom) of **ZnBdu** in CDCl₃ at 298 K.

formula	$C_{74}H_{80}B_2N_4Zn$		
fw	1112.47		
crystal system	cubic		
space group	I 4 3d (#220)		
color of crystal	orange		
crystal size (mm)	$0.13 \times 0.11 \times 0.11$		
<i>a</i> (Å)	26.536(4)		
<i>b</i> (Å)	26.536(4)		
<i>c</i> (Å)	26.536(4)		
α (deg)	90		
β (deg)	90		
γ (deg)	90		
$V(Å^3)$	18686(4)		
Ζ	12		
$ ho_{ m calc}~(m g~ m cm^{-3})$	1.186		
μ (Mo K α) (cm ⁻¹)	4.402		
<i>F</i> (000) 7104.00			
$2\theta_{\max}$ (deg)	52.0		
no. of all reflns collected 66863			
no. of all unique reflns 3075			
<i>R</i> _{int} 0.1121			
no. of obsd reflns ^{<i>a</i>}	3072		
no. of parameters	190		
$R_1^{\ a,b}$	0.0587		
w R_2 (all data) ^c	0.1209		
GOF (all data) ^{d} 1.280			
CCDC number 2035525			
$a I > 2\sigma(I)$. $b R_1 = \Sigma F_0 - F_c /\Sigma F_0 $.			
^c wR ₂ = { $\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2$ } ^{1/2} .			
^d GOF = $[\{\Sigma w (F_o^2 - F_c^2)^2 / (N_o - N_v)]^{1/2},$ where			
$N_{\rm o}$ and $N_{\rm v}$ denote the number of observations			
and variables, respectively.			

Table S1. Crystallographic Data for **ZnBdu**.

Excited State	Transition Energy (Wavelength)		Oscillator Strength
\mathbf{S}_1	MO255 → MO256 (66%) MO255 → MO257 (34%)	2.6473 eV (468.35 nm)	0.0005
S_2	$MO254 \rightarrow MO257 (47\%)$ $MO255 \rightarrow MO257 (53\%)$	2.6516 eV (467.59 nm)	0.0004
S_3	$MO254 \rightarrow MO256 (22\%)$ $MO254 \rightarrow MO257 (38\%)$ $MO255 \rightarrow MO256 (40\%)$	2.9424 eV (421.37 nm)	0.3013
S4	$MO254 \rightarrow MO256 (40\%)$ $MO254 \rightarrow MO259 (12\%)$ $MO255 \rightarrow MO257 (48\%)$	2.9729 eV (417.04 nm)	0.3694
S_5	MO253 → MO256 (62%) MO253 → MO257 (38%)	3.2874 eV (377.15 nm)	0.0641
S_6	$\begin{array}{c} MO253 \to MO256 \ (13\%) \\ MO254 \to MO258 \ (37\%) \\ MO255 \to MO256 \ (9\%) \\ MO255 \to MO258 \ (41\%) \end{array}$	3.3077 eV (374.84 nm)	0.1594
S ₇	$MO252 \rightarrow MO256 (26\%)$ $MO252 \rightarrow MO259 (18\%)$ $MO255 \rightarrow MO259 (56\%)$	3.3382 eV (371.42 nm)	0.1662
S_8	$MO252 \rightarrow MO257 (65\%)$ $MO255 \rightarrow MO259 (35\%)$	3.3528 eV (369.80 nm)	0.0726
S 9	$MO250 \rightarrow MO256 (53\%)$ $MO250 \rightarrow MO257 (33\%)$ $MO251 \rightarrow MO256 (14\%)$	3.3887 eV (365.88 nm)	0.2798
S ₁₀	$\begin{array}{c} MO249 \to MO257 \ (12\%) \\ MO250 \to MO256 \ (22\%) \\ MO250 \to MO257 \ (13\%) \\ MO251 \to MO257 \ (53\%) \end{array}$	3.3983 eV (364.84 nm)	0.0708
S ₁₁	$MO254 \rightarrow MO258$	3.4410 eV (360.31 nm)	0.0003
S ₁₂	$MO249 \rightarrow MO257$	3.4899 eV (355.27 nm)	0.0322
S ₁₃	$MO248 \rightarrow MO256 (62\%)$ $MO248 \rightarrow MO257 (38\%)$	3.4931 eV (354.94 nm)	0.0422
S_{14}	$MO254 \rightarrow MO259 (52\%)$ $MO255 \rightarrow MO259 (48\%)$	3.4988 eV (354.36 nm)	0.0001
S ₁₅	$\begin{array}{c} MO245 \rightarrow MO256\ (32\%) \\ MO246 \rightarrow MO256\ (30\%) \\ MO246 \rightarrow MO257\ (18\%) \\ MO247 \rightarrow MO257\ (20\%) \end{array}$	3.5618 eV (348.10 nm)	0.0387
S ₁₆	$MO244 \rightarrow MO257 (9\%)$ $MO245 \rightarrow MO257 (15\%)$	3.5646 eV (347.82 nm)	0.0164

Table S2. Calculated Excited States of ZnBph.

	$MO246 \rightarrow MO256 (30\%)$		
	MO246 → MO257 (19%)		
	MO247 → MO256 (18%)		
	MO247 → MO259 (9%)		
	MO245 → MO256 (52%)		
S_{17}	MO245 → MO257 (27%)	3.5712 eV (347.18 nm)	0.0337
	MO247 → MO256 (21%)		
	MO245 → MO257 (22%)		
S_{18}	MO247 → MO257 (15%)	3.5814 eV (346.19 nm)	0.0158
	MO253 → MO257 (63%)		
	MO244 → MO257 (18%)		
S	MO245 → MO257 (42%)	2 5959 N (215 76 nm)	0.0008
519	MO247 → MO257 (25%)	5.5656 EV (545.70 mm)	0.0998
	MO253 → MO256 (15%)		
See	MO252 → MO256 (60%)	2.6085 oV (242.50 nm)	0.0015
320	MO252 → MO257 (40%)	5.0085 EV (545.59 mm)	0.0013
Sa	MO251 → MO256 (60%)	3.6465 eV(340.01 nm)	0.0012
521	MO251 → MO257 (40%)	5.0405 CV (540.01 IIII)	0.0012
Saa	MO243 → MO256 (76%)	3 6661 eV (338 17 nm)	0.0886
322	MO250 → MO257 (24%)	5.0004 CV (558.17 IIII)	0.0880
Saa	MO242 → MO257 (17%)	3 6708 eV (337 76 nm)	0.0059
323	MO250 → MO257 (83%)	5.0708 CV (557.70 mm)	0.0057
Sat	MO242 → MO257 (20%)	3 60/6 eV (335 58 nm)	0.0006
524	MO243 → MO257 (80%)	5.0740 C V (555.58 IIII)	0.0000
Sac	MO249 → MO256 (59%)	3.7063 eV(334.53 nm)	0.0000
525	MO249 → MO257 (41%)	5.7005 CV (554.55 IIII)	0.0000
S ₂₆	$MO248 \rightarrow MO257$	3.7391 eV (331.59 nm)	0.0001
	MO253 → MO256 (21%)		
S_{27}	MO253 → MO257 (16%)	3.7417 eV (331.36 nm)	0.0635
	MO253 → MO258 (63%)		
	MO244 → MO256 (52%)		
S_{28}	$MO245 \rightarrow MO256 (16\%)$	3.7573 eV (329.98 nm)	0.0039
	MO245 → MO257 (32%)		
S20	MO244 → MO257 (66%)	3 7645 eV (329 35 nm)	0.0045
529	$MO245 \rightarrow MO256 (34\%)$	5.7015 CV (52).55 mil)	0.0012
	$MO244 \rightarrow MO256 (10\%)$		
S ₃₀	MO247 → MO256 (53%)	3.7855 eV (327.53 nm)	0.0001
	MO247 → MO257 (37%)		
S ₃₁	$MO246 \rightarrow MO257$	3.8097 eV (325.45 nm)	0.0007
S22	MO252 → MO257 (25%)	3 8118 eV (325 27 nm)	0 0723
032	MO252 → MO259 (75%)	5.0110 CV (525.27 IIII)	0.0723
S33	$MO242 \rightarrow MO256 (31\%)$	3 8383 eV (373 07 nm)	0 0060
	MO242 → MO257 (24%)	5.0505 CV (525.02 IIII)	0.0000

	MO243 → MO256 (27%)		
	$MO243 \rightarrow MO257 (18\%)$		
S24	MO242 → MO257 (69%)	3 8428 eV (322 64 nm)	0.0039
034	$MO243 \rightarrow MO256 (31\%)$	5.0420 CV (522.04 IIII)	0.0057
	MO250 → MO256 (16%)		
S ₃₅	MO250 → MO257 (12%)	3.8666 eV (320.65 nm)	0.0007
	MO250 → MO258 (72%)		
	MO240 → MO256 (20%)		
S	MO241 → MO256 (12%)	2,8000 oV (218,72 nm)	0.0128
336	$MO249 \rightarrow MO259 (11\%)$	5.8900 ev (518.75 mm)	0.0128
	MO251 → MO259 (57%)		
	MO241 → MO256 (46%)		
C	MO241 → MO257 (27%)	2 9057 11 (219 26)	0.0076
S 37	$MO250 \rightarrow MO256 (11\%)$	3.895/ eV (318.26 nm)	0.2376
	$MO250 \rightarrow MO258 (16\%)$		
	MO240 → MO257 (42%)		
G	$MO241 \rightarrow MO257 (12\%)$		0 1 7 0 2
S ₃₈	$MO251 \rightarrow MO257 (14\%)$	3.9211 eV (316.20 nm)	0.1703
	$MO251 \rightarrow MO259 (32\%)$		
	$MO241 \rightarrow MO256 (12\%)$		
9	$MO248 \rightarrow MO256 (16\%)$		0.0000
S ₃₉	$MO248 \rightarrow MO257 (12\%)$	3.9606 eV (313.05 nm)	0.0808
	$MO248 \rightarrow MO258$ (60%)		
	MO249 → MO257 (21%)	2.0510 XX (212.15)	0.0201
S_{40}	$MO249 \rightarrow MO259$ (79%)	3.9719 eV (312.15 nm)	0.0391
	$MO238 \rightarrow MO256 (12\%)$		
9	$MO238 \rightarrow MO257 (12\%)$	4 00 40 JL (200 50)	0.000
S_{41}	$MO239 \rightarrow MO256 (48\%)$	4.0049 eV (309.58 nm)	0.0306
	$MO239 \rightarrow MO257 (28\%)$		
S42	$MO238 \rightarrow MO257$	4.0198 eV (308.44 nm)	0.0146
	$MO238 \rightarrow MO256 (7\%)$		
	$MO239 \rightarrow MO256 (17\%)$		
	$MO239 \rightarrow MO257 (12\%)$		
S ₄₃	$MO246 \rightarrow MO256 (12\%)$	4.0239 eV (308.12 nm)	0.0013
	$MO246 \rightarrow MO257 (9\%)$		
	$MO246 \rightarrow MO258 (43\%)$		
	$MO238 \rightarrow MO257 (16\%)$		
S44	$MO247 \rightarrow MO257 (17\%)$	4.0507 eV (306.08 nm)	0.0195
₩44	$MO247 \rightarrow MO259 (67\%)$		0.0190
S45	$MO241 \rightarrow MO257$	4.2024 eV (295.04 nm)	0.0001
	$MO240 \rightarrow MO256 (59\%)$		0.0001
S46	$MO240 \rightarrow MO257 (41\%)$	4.2077 eV (294.66 nm)	0.0001
S47	$MO252 \rightarrow MO258$	4 2791 eV (289 75 nm)	0.0000
₩4/	1110202 1110200	······································	0.0000

S_{48}	$MO253 \rightarrow MO259$	4.3045 eV (288.03 nm)	0.0000
S49	$MO251 \rightarrow MO258$	4.3204 eV (286.97 nm)	0.0000
S ₅₀	$MO245 \rightarrow MO258$	4.3250 eV (286.67 nm)	0.0014

HOMO: MO255, LUMO: MO256

MO Contribution / % Molecular Eigenvalue Bph-dipy Orbital / Hartrees zinc dipyrrinate phenylene boron mesityl 259 (LUMO+3) -0.0590217.44 27.27 25.60 29.55 0.14 258 (LUMO+2) 0.15 24.29 34.08 -0.0611718.32 23.16 257 (LUMO+1) 76.99 4.11 -0.083690.49 14.58 3.83 0.55 76.78 256 (LUMO) -0.0843814.41 3.85 4.41 255 (HOMO) -0.198050.02 96.35 3.54 0.01 0.08 254 (HOMO-1) -0.198700.01 96.68 3.22 0.01 0.08 253 (HOMO-2) -0.22306 0.00 0.13 1.36 87.44 11.07 252 (HOMO-3) -0.224280.00 0.21 11.02 1.28 87.49

Table S3. Molecular-Orbital Contributions of ZnBph.

Figure S5. Kohn–Sham molecular orbitals of **ZnBph**.

Excited	Turneritien	$\mathbf{E}_{\mathbf{w}} = \mathbf{W}_{\mathbf{w}} = 1_{\mathbf{w}} = 4_{\mathbf{w}}$	Oscillator	
State	Iransition	Energy (wavelength)	Strength	
S ₁	$MO287 \rightarrow MO288$	2.7222 eV (455.45 nm)	0.0000	
	MO286 → MO288 (10%)			
S_2	MO286 → MO289 (48%)	2.7258 eV (454.86 nm)	0.0000	
	MO287 → MO289 (42%)			
	MO284 → MO288 (20%)			
c	MO286 → MO288 (38%)	2.0649 oV(404.54 mm)	0.2410	
53	MO286 → MO289 (21%)	5.0648 eV (404.54 nm)	0.3419	
	MO287 → MO288 (21%)			
S 4	$MO286 \rightarrow MO289$	3.0747 eV (403.24 nm)	0.3580	
	MO282 → MO289 (18%)			
S_5	MO284 → MO288 (58%)	3.2098 eV (386.26 nm)	0.1475	
	MO287 → MO289 (24%)			
	MO284 → MO288 (32%)			
S.	MO285 → MO288 (16%)	2 2117 N (285 68 nm)	0 1858	
36	MO285 → MO289 (35%)	5.2147 EV (565.08 mm)	0.1656	
	MO286 → MO289 (17%)			
	MO280 → MO288 (22%)			
S_7	MO281 → MO288 (13%)	3.2883 eV (377.05 nm)	0.0007	
	MO281 → MO289 (65%)			
S_8	$MO280 \rightarrow MO288$ 3.2883 eV (377.05 m		0.0000	
So	MO286 → MO290 (52%)	3 3230 eV (373 11 nm)	0 0009	
	MO287 → MO290 (48%)	5.5250 CV (575.11 IIII)	0.0007	
S ₁₀	$MO287 \rightarrow MO291$	3.3279 eV (372.56 nm)	0.0008	
S ₁₁	$MO287 \rightarrow MO290$	3.4882 eV (355.44 nm)	0.0000	
S12	MO286 → MO291 (56%)	3 4963 eV (354 62 nm)	0.0000	
512	MO287 → MO291 (44%)	5.4705 CV (554.02 IIII)	0.0000	
S ₁₃	$MO285 \rightarrow MO288$	3.5395 eV (350.29 nm)	0.0002	
	MO284 → MO288 (15%)			
S ₁₄	MO284 → MO289 (70%)	3.5421 eV (350.03 nm)	0.0001	
	$MO285 \rightarrow MO289 (15\%)$			
S15	MO283 → MO288 (74%)	3 5500 eV (349 25 nm)	0 0004	
513	MO284 → MO288 (26%)	5.5500 CV (515.25 mil)	0.0001	
S ₁₆	MO282 → MO288 (14%)			
	$MO282 \rightarrow MO289 (64\%)$	3.5512 eV (349.14 nm)	0.0041	
	$MO285 \rightarrow MO289 (22\%)$			
S17	MO283 → MO290 (64%)	3.6154 eV (342 93 nm)	0.1603	
51/	MO284 → MO290 (36%)	2.012 + 2 + (3 + 2.9 5 mm)	0.1005	
S ₁₈	MO282 → MO291 (63%)	3 6230 eV (342 21 nm)	0 1828	
	MO285 → MO291 (37%)	5.0250 CT (572.21 mm)	0.1020	

Table S4. Calculated Excited States of ZnBdu.

c	$MO280 \rightarrow MO200$	2.6645 eV(229.24 mm)	0.2212
519	$MO280 \rightarrow MO290$	5.0045 eV (558.54 nm)	0.3213
S ₂₀	$MO280 \rightarrow MO290 (37\%)$ $MO281 \rightarrow MO201 (63\%)$	3.6703 eV (337.80 nm)	0.0200
	$MO281 \rightarrow MO291 (03\%)$		
S ₂₁	$MO284 \rightarrow MO290 (82\%)$	3.6871 eV (336.26 nm)	0.0020
	$MO285 \rightarrow MO290 (18\%)$		
	$MO2/2 \rightarrow MO288 (12\%)$		
S ₂₂	$MO2/3 \rightarrow MO289 (11\%)$	3.6906 eV (335.95 nm)	0.0128
	$MO282 \rightarrow MO288 (60\%)$		
	$MO285 \rightarrow MO288 (17\%)$		
	$MO282 \rightarrow MO288 (9\%)$		
	$MO283 \rightarrow MO288 (10\%)$		
S_{23}	$MO283 \rightarrow MO289 (43\%)$	3.6912 eV (335.89 nm)	0.0205
	$MO284 \rightarrow MO289 (13\%)$		
	$MO285 \rightarrow MO291 (25\%)$		
S ₂₄	$MO285 \rightarrow MO291$	3.6921 eV (335.81 nm)	0.0004
S ₂₅	$MO281 \rightarrow MO288$	3.6938 eV (335.66 nm)	0.0002
Sac	MO273 → MO288 (62%)	3 6958 eV (335 48 nm)	0.0613
526	MO282 → MO288 (38%)	5.0758 CV (555.46 IIII)	0.0015
S ₂₇	MO272 → MO288 (23%)	3 6072 eV (335 35 nm)	0.0658
	MO280 → MO289 (77%)	5.0972 CV (555.55 IIII)	0.0038
	MO272 → MO289 (11%)		
	MO273 → MO288 (13%)		
C	MO273 → MO289 (15%)	2.6072 oV(225.24 mm)	0.0227
528	$MO280 \rightarrow MO288 (9\%)$	3.0973 ev (333.34 mm)	0.0227
	MO280 → MO289 (43%)		
	$MO283 \rightarrow MO289 (9\%)$		
S ₂₉	$MO270 \rightarrow MO288$	3.7692 eV (328.94 nm)	0.0870
See	MO279 → MO288 (18%)	2.7956 ov (227.51 nm)	0.0005
530	MO279 → MO289 (82%)	5.7850 ev (527.51 mm)	0.0003
S ₃₁	$MO278 \rightarrow MO288$	3.7864 eV (327.44 nm)	0.0000
	MO270 → MO289 (10%)		
	MO274 → MO288 (14%)		
	MO275 → MO289 (18%)		
S ₃₂	MO276 → MO288 (17%)	3.7973 eV (326.51 nm)	0.0000
	MO277 → MO289 (19%)		
	MO280 → MO288 (10%)		
	MO281 → MO289 (12%)		
	MO274 → MO288 (33%)		
S ₃₃	$MO276 \rightarrow MO288 (42\%)$	3.7986 eV (326.40 nm)	0.0012
	$MO280 \rightarrow MO288 (25\%)$		
	MO270 → MO288 (18%)		
S ₃₄	$MO271 \rightarrow MO288 (12\%)$	3.8008 eV (326.21 nm)	0.0000
	$MO271 \rightarrow MO289 (18\%)$		

	$MO274 \rightarrow MO288(.9\%)$		
	$MO274 \rightarrow MO288 (-976)$ $MO275 \rightarrow MO289 (-8\%)$		
	$MO276 \rightarrow MO288 (12\%)$		
	$MO277 \rightarrow MO289 (10\%)$		
	$MO280 \rightarrow MO288 (7\%)$		
	$MO281 \rightarrow MO289 (6\%)$		
	$MO275 \rightarrow MO288 (18\%)$	2.0664 XL(220.67	0.0000
S 35	$MO275 \rightarrow MO289 (82\%)$	3.8664 eV (320.67 nm)	0.0020
S ₃₆	$MO274 \rightarrow MO288$	3.8671 eV (320.61 nm)	0.0009
C	MO272 → MO288 (62%)	2.9(00 eV(220.45 mm))	0.0045
337	MO273 → MO288 (38%)	5.8690 eV (520.45 nm)	0.0045
Sec	$MO272 \rightarrow MO288 (18\%)$	2.9722 oV(220.19 nm)	0.0044
538	MO272 → MO289 (82%)	5.8725 ev (520.18 mm)	0.0044
Saa	$MO278 \rightarrow MO289 (14\%)$	3.0054 eV (317.47 nm)	0.0440
339	MO278 → MO290 (86%)	5.9054 CV (517.47 IIII)	0.0449
S 40	MO279 → MO288 (59%)	3 9086 eV (317 21 nm)	0.0148
540	MO279 → MO291 (41%)	5.7000 CV (517.21 mm)	0.0140
S41	$MO279 \rightarrow MO291$	3.9109 eV (317.02 nm)	0.0314
S42	$MO278 \rightarrow MO288 (17\%)$	3 9128 eV (316 87 nm)	0.0012
	$MO278 \rightarrow MO289 (83\%)$	5.5120 C ((510.07 mil)	0.0012
S43	$MO271 \rightarrow MO288$	3.9179 eV (316.45 nm)	0.0001
	MO270 → MO289 (54%)		
S44	MO271 → MO288 (32%)	3.9230 eV (316.04 nm)	0.0000
	$MO271 \rightarrow MO289 (14\%)$		
	MO275 → MO288 (42%)		
S_{45}	MO277 → MO288 (47%)	3.9584 eV (313.22 nm)	0.0000
	$MO281 \rightarrow MO288 (11\%)$		
	MO274 → MO289 (35%)		
S46	$MO276 \rightarrow MO288 (9\%)$	3 9615 eV (312 97 nm)	0.0000
040	MO276 → MO289 (45%)	5.5015 CV (512.57 mil)	0.0000
	$MO280 \rightarrow MO289 (11\%)$		
S ₄₇	$MO276 \rightarrow MO290$	3.9805 eV (311.48 nm)	0.0419
S48	MO277 → MO288 (18%)	3.9852 eV (311.11 nm)	0.0303
~ 70	$MO277 \rightarrow MO291 (82\%)$		0.0000
S40	MO275 → MO288 (72%)	3.9887 eV (310.84 nm)	0.0031
~ 77	$MO277 \rightarrow MO291 (28\%)$		0.0001
S_{50}	$MO274 \rightarrow MO288 (17\%)$	3.9918 eV (310.59 nm)	0.0003

HOMO: MO287, LUMO: MO288

M - 1 1	Б 1		MO Contribution / %			
Orbital	Molecular Eigenvalue	_:	Bdu-dipy			
Official	/ Hartees	ZIIIC	dipyrrinate	durylene	boron	mesityl
291 (LUMO+3)	-0.05883	0.01	2.00	16.16	30.35	51.48
290 (LUMO+2)	-0.05905	0.01	2.00	16.54	30.27	51.18
289 (LUMO+1)	-0.07798	0.58	90.58	8.79	0.01	0.04
288 (LUMO)	-0.07804	0.59	90.54	8.85	0.00	0.02
287 (HOMO)	-0.19579	0.00	97.29	2.67	0.01	0.03
286 (HOMO-1)	-0.19621	0.00	97.33	2.63	0.01	0.03
285 (HOMO-2)	-0.21959	0.00	3.08	81.43	0.32	15.17
284 (HOMO-3)	-0.21963	0.01	2.88	81.04	0.34	15.73

Table S5. Molecular-Orbital Contributions of ZnBdu.

Figure S6. Kohn–Sham molecular orbitals of **ZnBdu**.

Figure S7. Fluorescence decay profiles of **ZnBph** (red), **ZnBdu** (blue) and **ZnBph**·2F⁻ (green) in toluene at 298 K. Black curve represents instrumental response function.

Figure S8. ¹H NMR spectra (400 MHz, CDCl₃) of **ZnBph** in the absence (top) and presence (2 equiv. and 4 equiv.) of TBAF (middle and bottom, respectively).

Figure S9. ¹H NMR spectra (400 MHz, CDCl₃) of **ZnBdu** in the absence (top) and presence (2 equiv. and 4 equiv.) of TBAF (middle and bottom, respectively).

Figure S10. ¹¹B{¹H} NMR spectra (400 MHz, CDCl₃) of **ZnBph** in the absence (top) and presence (4.0 equiv.) of TBAF (bottom).

Figure S11. ¹¹B{¹H} NMR spectra (400 MHz, CDCl₃) of **ZnBdu** in the absence (top) and presence (4.0 equiv.) of TBAF (bottom).

Figure S12. ¹⁹F{¹H} NMR spectrum (400 MHz, CDCl₃) of TBAF (existing as CDClF₂).

Figure S13. ¹⁹F{¹H} NMR spectrum (400 MHz, CDCl₃) of **ZnBph** in the presence of TBAF (4.0 equiv.).

Figure S14. ¹⁹F{¹H} NMR spectrum (400 MHz, CDCl₃) of **ZnBdu** in the presence of TBAF (4.0 equiv.).

Figure S15. Kohn–Sham molecular orbitals of **ZnBph·2F**⁻.