Food	Model	Model	Route of administration/dosage	Result	Ref.		
	Assessment of cecal			\uparrow Concentrations of butyric acid \downarrow concentrations of succinic acid			
	microbiota activity	mdr1a/mice	Oral: 10%	↑Colon crypt size and number of goblet cells per crypt	[1]		
	and colon morphology			\downarrow Number of Clostridium perfringens, Enterococcus spp. and Lactobacillus spp.			
				\downarrow Weight gain \downarrow Mortality \downarrow Diarrhea score			
Dluchorm		Female-	Oral: 10, 20 and 40 mg/kg	\downarrow Shortening of the colons owing to inflammation and hydropsia	[2]		
Blueberry	TNBS-Induced UC	C57BL/6 mice		\downarrow Mucosal congestion, erosion and thickening of the colon wall	[2]		
				\uparrow Goblet cells and IL-10 \downarrow NO, MPO, IL-12, TNFa and IFN-g			
				\downarrow Disease activity index \downarrow MPO activity \downarrow MDA			
	DSS-induced UC	Rat	Oral: 5 g/rat	\downarrow Bacterial translocation \downarrow Aerobic and anaerobic bacterial count	[3]		
				\downarrow MCP-1and GRO/CINC-1 (not significant) \uparrow Cecal SCFA			
			Oral: 375, 750, and 1500 mg/kg Rectal: 750 and 1500 mg/kg	\downarrow Ulcer area and macroscopic ulcer index			
Darbarn	Acetic acid-induced UC	Male Wistar rats		\downarrow Colon wet weight/length ratio	[4]		
Barberry				\downarrow Inflammatory cells infiltration \downarrow Epithelial necrosis and lesions	[4]		
				\wedge Colon crypt size and number of goblet cells per crypt			
	DSS-induced UC	Male-specific pathogenfree	Oral: 0.16 mg/day	m ASurvival rates $ m J$ Body weight loss $ m A$ Length of colorectum			
Sunrouge				\downarrow Spleen hypertrophy \uparrow Anthocyanin concentrations in tissues and serum	[5]		
		ICR mice		个ALT, no difference in TNFa, IL-1b and IL-6			
			Oral: 0.1 and 1% extract powder, 1.5% dried whole	\downarrow Colon length \downarrow MPO activity \downarrow TNFa and IL-1b serum level			
Cranberry	DSS-induced UC	Male BALB/c mice		\downarrow TNFa and IL-1b gene expression \downarrow Disease activity index	[6]		
				↓Structural damage in colonic mucosa	[0]		
				\downarrow Inflammatory cells infiltration			
			Oral: 20% dried hilberry 1 and	\downarrow Secretion of IFN-g, TNFa and IL-6 \downarrow Intestinal inflammation			
	DSS-induced UC	BALB/c mice	10% anthocyanin ovtract	↓Histological scores ↓Colon shortening	[7]		
Bilborn				\downarrow leukocytes infiltration \downarrow Apoptotic epithelial cells			
вірену	Intestinal oxidative						
	stress induced by	mice	Oral: 1.62 g/mouse	\downarrow MDA \downarrow Mucosal injury in the ileum	[8]		
	ischemia reperfusion	mice					
Cooked navy			Oral: 20% navy bean or black	↑Cecal SCFA concentrations			
and black	DSS-induced UC C57BL/6 mice C57BL/6 mice		hean	\downarrow mRNA expression of colonic inflammatory cytokines (IL-6, IL-9, IFN-g and IL-			
bean			Dean	17A) 个Anti-inflammatory IL-8, IL-10, Tlr4 and FasL			

Supplementary Table 1 Anti-inflammatory effects of anthocyanidins enriched plant and fruit (cell and animal study).

				↓Serum levels of IL-1b, TNFa, IFN-g and IL-17a		
				↑Cecal SCFA and fecal phenolic compound concentrations		
				↑Histological injury score and apoptosis		
				↑Serum ORAC, reversed splenic tissue weight increase		
	DSS-induced UC	DSS-induced UC C57BL/6J male mice	Oral: 5% black raspberry diets	↓Staining of macrophages and neutrophils		
				\downarrow NFkB p65 nuclear localization in the colon		
Diack				\downarrow Ulceration in the mucosa, submucosa and muscularis on day 28		
BIACK				\downarrow Protein expression of DNMT3B, HDAC1, HDAC2 and MBD2	[10]	
raspuerry				\downarrow HDAC1 mRNA expression in spleen,		
				\downarrow mRNA expression of DNMT3B, HDAC1, HDAC2 and MBD2 in bone marrow		
				↑Methylation and mRNA expression of dkk3, dkk2 and apc		
				\downarrow B-catenin nuclear localization		

ALT: Alanine transaminase; DNMT: Deoxyribonucleic acid methyltransferase; DSS: Dextran sodium sulfate; FasL: Fas ligand; GRO/CINC-1: Growth-regulated oncogene/cytokine induced neutrophil chemoattractants-1; HDAC: Histone deacetylases; iNOS: Inducible nitric oxide synthase; MBD: Methyl-binding domain; MCP-1: Monocyte chemoattractant protein-1; MDA: Malondialdehyde; MPO: Myeloperoxidase; NO: Nitric oxide; ORAC: Oxygen radical absorbance capacity; p-Ikba: Phospho-Ikba; PMN: Polymorphonuclear; SCFA: Short-chain fatty acids; TIr4: Toll-like receptor 4; TNBS: 2,4,6-Trinitrobenzene sulfonic acid; UC: Ulcerative colitis.

Notes and references:

- 1. Paturi, G., et al., Influence of dietary blueberry and broccoli on cecal microbiota activity and colon morphology in mdr1a(-/-) mice, a model of inflammatory bowel diseases. Nutrition, 2012. 28(3): p. 324-30.
- 2. Xiao, X., et al., Preventive effects of cranberry products on experimental colitis induced by dextran sulphate sodium in mice. Food Chem, 2015. 167: p. 438-46.
- 3. Osman, N., et al., Probiotics and blueberry attenuate the severity of dextran sulfate sodium (DSS)-induced colitis. Dig Dis Sci, 2008. 53(9): p. 2464-73.
- 4. Minaiyan, M., et al., *Comparative Study of Berberis vulgaris Fruit Extract and Berberine Chloride Effects on Acetic Acid-Induced Colitis in Rats.* Iran J Pharm Res, 2011. **10**(1): p. 97-104.
- 5. Akiyama, S., et al., *Effects of anthocyanin-rich tea "Sunrouge" on dextran sodium sulfate-induced colitis in mice*. Biofactors, 2012. **38**(3): p. 226-33.
- 6. Rossi, A., et al., Protective effects of anthocyanins from blackberry in a rat model of acute lung inflammation. Free Radic Res, 2003. 37(8): p. 891-900.
- 7. Biedermann, L., et al., Bilberry ingestion improves disease activity in mild to moderate ulcerative colitis an open pilot study. J Crohns Colitis, 2013. 7(4): p. 271-9.
- 8. Jakesevic, M., et al., *Effects of bilberry (Vaccinium myrtillus) in combination with lactic acid bacteria on intestinal oxidative stress induced by ischemia-reperfusion in mouse*. J Agric Food Chem, 2013. **61**(14): p. 3468-78.
- 9. Zhang, C., et al., Cooked navy and black bean diets improve biomarkers of colon health and reduce inflammation during colitis. Br J Nutr, 2014. 111(9): p. 1549-63.
- 10. Wang, L.S., et al., Dietary black raspberries modulate DNA methylation in dextran sodium sulfate (DSS)-induced ulcerative colitis. Carcinogenesis, 2013. 34(12): p. 2842-50.

Anthocyanidins	Structure	Model	Concentration/dose	Signaling pathways and downstream genes	Pharmacological activity	Ref.
Pelargonidin		Murine J774 macrophages	100 µmol L–1	↓iNOS, ↓NFκB	Anti-inflammatory activity	[1]
		In vitro enzyme inhibition assay	IC50 = 90 μmol L–1 IC50 = 60 μmol L–1	↓COX-1 ↓COX-2	Anti-inflammatory potential	[2]
		In vitro enzyme inhibition assay	40 μmol L−1 ↓COX-1* ↓COX-2		Anti-inflammatory potential	[3]
Cyanidin	ОН	In vitro enzyme inhibition assay	0.15-1.2 μmol L–11	↓PLA2 A	Anti-inflammatory potential	[4]
	HO CH CH	LPS-induced RAW 264.7 cells	1-5 μmol L–1	↓COX-2 ↓ERK1/2 ↓IL-1 ↓iNOS, ↓IкВ-α ↓JNK1/2 ↓NF-кВ ↓p38 ↓TNF-α	Anti-inflammatory activity	[5]
		In vitro enzyme inhibition assay	0.15-1.2 mmol L–1	↓PLA2	Anti-inflammatory potential	[6]
Delphinidin	но странов он он он он	LPS-activated murine macrophage RAW264 cells	25-100 μmol L–1	↓AP-1 ↓C/EBPδ ↓c-Jun ↓COX-2 ↓ERK1/2 ↓IкВ-α ↓JNK1/2 ↓NF-кВ ↓p38	Anti-inflammatory activity	[7]
		In vitro enzyme inhibition assay	0.15-2.1 μmol L–1	↓PLA2	Anti-inflammatory potential	[6]
Peonidin	он он	TPS-stimulated JB6 P+ mouse epidermal cells	5-20 μmol L–1	↓COX-2 ↓ERK1/2 A	Anti-inflammatory activity	[8]
Petunidin		In vitro enzyme inhibition assay	0.15-2.1 μmol L–1	↓PLA2	Anti-inflammatory	[6]

Supplementary Table 2 Anti-inflammatory activity/ potential of the six most common anthocyanidins.

					potential	
Mahidin	HO O* CH3	In vitro enzyme inhibition assay	0.15-2.1 μmol L–1	↓PLA2	Anti-inflammatory potential	[6]
Walvium	ОН	In vitro enzyme inhibition assay	40 μmol L–1	↓COX-1 ↓COX-2	Anti-inflammatory potential	[3]

Unhibition. *, the most potent inhibitor when compared to other anthocyanidins. AP: activator protein; COX: cyclooxygenase; C/EBP: CCAAT/enhancer-binding protein; ERK: extracellular signal-regulated kinase; iNOS: inducible nitric oxid synthase; IκB: inhibitor of nuclear factor kappa B kinase; IL: interleukin; JNK: c-Jun N-terminal kinase; NF-κB: nuclear factor kappa B; PLA: phospholipase A; p38: p38 kinase; TNF: tumor necrosis factor;

Notes and references:

- 1. Hämäläinen, M., et al., Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm, 2007. 2007: p. 45673.
- 2. Wang, H., et al., Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. J Nat Prod, 1999. 62(2): p. 294-6.
- 3. Seeram, N.P., Y. Zhang, and M.G. Nair, Inhibition of proliferation of human cancer cells and cyclooxygenase enzymes by anthocyanidins and catechins. Nutr Cancer, 2003. **46**(1): p. 101-6.
- 4. Muñoz-Espada, A.C. and B.A. Watkins, *Cyanidin attenuates PGE2 production and cyclooxygenase-2 expression in LNCaP human prostate cancer cells*. J Nutr Biochem, 2006. **17**(9): p. 589-96.
- 5. Min, S.W., S.N. Ryu, and D.H. Kim, Anti-inflammatory effects of black rice, cyanidin-3-O-beta-D-glycoside, and its metabolites, cyanidin and protocatechuic acid. Int Immunopharmacol, 2010. **10**(8): p. 959-66.
- 6. Dreiseitel, A., et al., *sPhospholipase A(2) is inhibited by anthocyanidins*. J Neural Transm (Vienna), 2009. **116**(9): p. 1071-7.
- 7. Hou, D.X., et al., Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: structure-activity relationship and molecular mechanisms involved. Biochem Pharmacol, 2005. **70**(3): p. 417-25.
- Kwon, J.Y., et al., Peonidin inhibits phorbol-ester-induced COX-2 expression and transformation in JB6 P+ cells by blocking phosphorylation of ERK-1 and -2. Ann N Y Acad Sci, 2007.
 1095: p. 513-20.

Supplementary Table 3

All of the biological processes of the most common anthocyanidins treated IBD

GO-BP	Category	Description	Count	%	Log10(P)
GO:0033674	GO biological processes	Positive regulation of kinase activity	15	34.09	-12.995
GO:1901699	GO biological processes	Cellular response to nitrogen compound	15	34.09	-12.531
GO:0034614	GO biological processes	Cellular response to reactive oxygen species	10	22.73	-12.374
GO:1904645	GO biological processes	Response to amyloid-beta	7	15.91	-10.918
GO:2000377	GO biological processes	Regulation of reactive oxygen species metabolic process	9	20.45	-10.166
GO:0034762	GO biological processes	Regulation of transmembrane transport	12	27.27	-9.576
GO:0006690	GO biological processes	Icosanoid metabolic process	7	15.91	-8.738
GO:0060326	GO biological processes	Cell chemotaxis	9	20.45	-8.502
GO:0019221	GO biological processes	Cytokine-mediated signaling pathway	12	27.27	-7.960
GO:0045124	GO biological processes	Regulation of bone resorption	5	11.36	-7.911
GO:0097237	GO biological processes	cellular response to toxic substance	8	18.18	-7.84
GO:0050878	GO biological processes	regulation of body fluid levels	9	20.45	-6.6
GO:0045907	GO biological processes	positive regulation of vasoconstriction	4	9.09	-6.44
GO:0008610	GO biological processes	lipid biosynthetic process	10	22.73	-6.35
GO:0030155	GO biological processes	regulation of cell adhesion	10	22.73	-6.34
GO:0045927	GO biological	positive regulation of growth	7	15.91	-6.23

	processes				
60.0031334	GO biological	positive regulation of protein	7	15 91	-6 13
00.0051554	processes	complex assembly		15.51	0.15
60.0021622	GO biological	receptor internalization	5	11 26	5 72
00.0031023	processes			11.50	-5.72
CO.00E0727	GO biological	regulation of inflammatory response	8	10 10	E E1
GO.0050727	processes			10.10	-5.51
CO:002E600	GO biological	collular response to drug	7	15.01	E 24
GO:0035690	processes	cellular response to drug	/	15.91	-5.34

All of the KEGG pathways of the most common anthocyanidins treated IBD

KEGG	Category	Description	Count	%	Log10(P)
hsa01521	KEGG pathway	EGFR tyrosine kinase inhibitor resistance	8	18.18	-11.86
hsa04611	KEGG pathway	Platelet activation	7	15.91	-8.64
hsa04913	KEGG pathway	Ovarian steroidogenesis	5	11.36	-7.52
hsa05206	KEGG pathway	MicroRNAs in cancer	8	18.18	-7.25
hsa04520	KEGG pathway	Adherens junction	5	11.36	-6.71
hsa05202	KEGG pathway	Transcriptional misregulation in cancer	6	13.64	-6.08
hsa00590	KEGG pathway	Arachidonic acid metabolism	4	9.09	-5.32
hsa04921	KEGG pathway	Oxytocin signaling pathway	5	11.36	-5.1
hsa04022	KEGG pathway	cGMP-PKG signaling pathway	5	11.36	-4.96
hsa02010	KEGG pathway	ABC transporters	3	6.82	-4.16
hsa04080	KEGG pathway	Neuroactive ligand-receptor interaction	5	11.36	-3.86
hsa04972	KEGG pathway	Pancreatic secretion	3	6.82	-3.16
hsa04010	KEGG pathway	MAPK signaling pathway	3	6.82	-1.96