Extensive removal of thallium by graphene oxide functionalized with aza-

crown ether

Shuxin Pan^{a,b}, Ting-Zheng Xie^{a,c*}, Tangfu Xiao^{a,b*}, Jiehui Xie^{a,c}

^a Key Laboratory for Water Quality and Conservation of the Pearl River Delta,
Ministry of Education, Guangzhou University, Guangzhou 510006, China

^b School of Environmental Science and Engineering, Guangzhou University,

Guangzhou 510006, China

^c Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China

Corresponding authors: xietingzheng@gzhu.edu.cn (T-Z Xie); <u>tfxiao@gzhu.edu.cn</u> (TF Xiao)

Table.S1 Kinetic parameters of FGO for Tl(I) removal fitted by pseudo-first order and pseudo-

17	Parameters —	Initial Tl concentration (mg \cdot L ⁻¹)				
Kinetic model	Falameters -	10	100	200		
Pseudo-first order model $Q_{t} = Q_{e}(1 - e^{-k_{1}t})$	$Q_e(\mathrm{mg}\cdot\mathrm{g}^{-1})$	77.10	311.68	449.26		
	K_1 (min ⁻¹)	9.12	6.05	11.09		
	R^2	0.994	0.975	0.976		
Pseudo-second order model	$Q_e(\mathrm{mg}\cdot\mathrm{g}^{-1})$	81.75	338.12	475.12		
$Q_{\rm t} = \frac{k_2 q_e^2 t}{1 + q_e k_2 t}$	$K_2(g \cdot mg^{-1} \cdot min^{-1})$	0.197	0.026	0.043		
$\mathfrak{L}_{\mathfrak{t}} = 1 + q_e k_2 t$	R^2	0.988	0.997	0.984		

second order models

-

Where Q_e and Q_t represent the adsorption capacity at equilibrium and at time t (min), respectively;

 k_1 and k_2 are the pseudo-first and pseudo-second order rate constants, respectively.

Table.S2 Fitting parameters of FGO for Tl(I) removal fitted by the intraparticle diffusion model.

Tl(I) initial concentratio n (mg·L ⁻¹)	K_{pl} (mg·g ⁻¹ ·min ^{-1/2})	C (mg·L ⁻¹)	R ²	K_{p2} (mg·g ⁻¹ · min ^{-1/2})	C (mg· L ⁻¹)	R ²	K_{p3} (mg·g ^{-1.} min ^{-1/2})	C (mg·L ⁻ ¹)	<i>R</i> ²
10	147.04	0.68	0.99	26.67	54.56	0.83	1.659	75.678	0.98
100	514.27	3.262	0.98 8	199.09	127.3 8	0.88	20.103	290.29 7	0.84

					358.7				
200	1011.074	7.184	0.96	93.816	6	0.69	71.389	353.51	0.99
					0				

 $K_{p1},\,K_{p2},\,K_{p3}(mg\cdot g^{-1}\cdot min^{-1/2})$ are the intraparticle diffusion rate coefficient.

Table.S3 The Langmuir, Freundlich and Temkin isotherm parameters for Tl(I) removal by the

Langmuir model			Freun	dlich mo	odel	el Temkin model		
$Q_{\rm e} = \left(\frac{Q_m K_L C_e}{1 + K_L C_e}\right)$			$Q_{\rm e} = K_F C_e^{1/n}$ $Q_{\rm e} = (\frac{RT}{b}) \log(K_T)$			$_{T}C_{e})$		
<i>Q_{max}</i>	K_L	R^2	K_F	п	<i>R</i> ²	K_T	b	<i>R</i> ²
$(mg \cdot g^{-1})$	$(L \cdot mg^{-1})$	n	$(L \cdot mg^{-1})$	11	n	$(L \cdot mg^{-1})$	$(Kj \cdot mol^{-1})$	n
2368.59	0.0015	0.991	17.653	1.53	0.990	0.073	0.0094	0.88

FGO process.

Where Q_e and Q_m represent the equilibrium and maximum adsorption capacity, respectively; C_e refers to the equilibrium concentration of sorbate; K_L is the Langmuir coefficient; K_F is the Freundlich indicator of the adsorption capacity; n is the dimensionless heterogeneity factor; K_T is the Temkin isotherm constant and b is the Temkin constant related to the heat of adsorption; R (8.314×10⁻³ kJ·mol⁻¹·K⁻¹) denotes as the universal gas constant, and T is the absolute temperature in Kelvin.