Integrated Cr and S poisoning of La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-δ} (LSCF) cathode of solid oxide fuel cells

Cheng Cheng Wang^{a,b,*}, Mortaza Gholizadeh^c, Bingxue Hou^d, Xincan Fan^{a,*}

^aShen Zhen Polytechnic, Shenzhen, 518055, China

^bFuels and Energy Technology Institute & Department of Chemical Engineering,

Curtin University, Perth, WA 6102, Australia

^cFaculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran

^aAviation Engineering Institute, Civil Aviation Flight University of China, GuangHan,618037, China

*Corresponding author:

sabrinachch_123@hotmail.com (Dr.C.C. Wang)

horsefxc@szpt.edu.cn (Prof.Fan)

Supporting information

Figure S1. Polarization (a) and impedance curves (b) for O_2 reduction reaction of porous LSCF cathodes in the presence of 1 ppm SO₂ at a cathodic current of 200 mA cm⁻² for 40 hours at 800 °C.

Figure S2. Polarization (a) and impedance curves (b) for O_2 reduction reaction of porous LSCF cathodes in the presence of 1 ppm SO₂ at a cathodic current of 200 mA cm⁻² for 40 hours at 800 °C.

Figure S3. Fitted impedance curve for O_2 reduction reaction of porous LSCF cathodes in the presence of Fe-Cr alloy for 20 hours at 800 °C (a) 0h, (b) 20h.

Figure S1.

Figure S2.

Figure S3.