Supporting Information

Achieving robust immobilization of CoP nanoparticles in cellulose nanofiber networks-derived carbon via chemical bonding for stable potassium-ion storage

Xudong Zhao^{1‡}, Dan Zhou^{1‡*}, Mingyang Chen^{2,4,5*}, Jiaqi Yang³, Li-Zhen Fan^{1*}

¹ Center for Green Innovation, School of Mathematics and Physics & Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China

² Center for Green Innovation, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

³ Office of Educational Administration, Shenyang Open University, Shenyang 110003, China

⁴ Shunde Graduate School of University of Science and Technology Beijing, Foshan 528000, China

⁵ Beijing Computational Science Research Center, Beijing 100084, China

[‡]These authors contributed equally to this work.

*Corresponding authors: zhoudan@ustb.edu.cn (D. Zhou); mychen@ustb.edu.cn (M. Chen); fanlizhen@ustb.edu.cn (L.-Z. Fan).

Fig. S1 TEM image of the CoP@CNFC composite.

Fig. S2 (a) X-ray photoelectron spectroscopy (XPS) spectra of CoP@CNFC. (b) High-resolution C 1s. (c) High-resolution N 1s.

Elements	Atomic Mass	Atomic Percentage	Mass content
		(at%)	(wt%)
С	12.01	43.14	28.0
Ν	14.00	1.40	1.10
Co	58.93	6.23	19.8
Р	15.98	10.76	18.0
0	16.00	38.46	33.1

Table S1 Elemental content analysis result of the CoP@CNFC composite

Fig. S3 (a) *Ex-situ* XRD patterns of the electrode discharged to 0.01 V. (b, c) the corresponding XRD patterns of the generated K_3P and KP at the fully discharged stage (0.01V).

Fig. S4. Optimized bulk species related to the CoP-K-ion battery at the PBE level. Color code: green = K, pink = P, and blue = Co.

CoP

Co₂P

 K_2P_3

Fig. S5. Optimized geometries and predicted reduction potentials vs. K^+/K for (a) K_3P (001) and (b) KP (001) surfaces at the PBE level. Color code: green = K, and pink = P.

CoP (011):

B. C. B. C. B. C.	
TAX TAX TAX	
NO ROMON	
	ATATAT.
	N N N N
THE THE THE	
	JUSING NUMBER
	X . X . X .
	The The The

K-coverage ≤ monolayer:

Fig. S6. Optimized geometries for potassiation of the CoP(011) slab. The surface area of the slab is 147.0 Å². Color code: green = K (first layer), orange = K (second layer), pink = P, and blue = Co.

K-coverage ≤ monolayer:

n(K) = 9 n(K) = 10 n(K) = 11 n(K) = 12

Fig. S7. Optimized geometries for potassiation of the CoP(111) slab. The surface area of the slab is 148.9 Å². Color code: green = K (first layer), orange = K (second layer), pink = P, and blue = Co.

Fig. S8. SEI-related Species for K-ion battery with EC, DEC, and KPF₆ electrolytes.