Supporting Information

A fast-responsive fluorescent turn-on probe for nitroreductase

imaging in living cells

Chengli Jia, Yong Zhang, Yuesong Wang, Min Ji^*

School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210009

Contents

1. Reported fluorescent probes	2
2. The characterization of NTR-NO ₂	3
3. The measurement of fluorescence quantum yields	.4
4. The HRMS analysis of the products	5
5. The fluorescent spectra of NTR-NO ₂ responding with NaBH ₄	6
6. Cytotoxicity assays of probe NTR-NO ₂ at different concentrations	6
7. Reference	7

1. Reported fluorescent probes

Probe	λ _{ex} /λ _{em} (nm)	Stokes shift (nm)	Response time (min)	Limit of detection (ng/mL)	Reference
OFTO NO2	564/586	22	90		Dyes and Pigments 2019, 171.
	467/526	59	60	27	Sensors and Actuators B: Chemical 2018, 276, 397-403.
	613/658	45	70	180	Chem. Commun., 2013 , 49, 10820–
$\begin{array}{c} O_2 N + N \\ & & \\$	695/750	55	15	77	Chem. Commun., 2013 , 49, 2554– 2556.
$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ $	470/520	50	5	9.6	Analyst, 2015 , 140,
	450/550	100	30		J. Photochem. Photobiol. A Chem. 2018 , 353, 292–

Table S1. Comparison of fluorescent probes for palladium detection

2. The characterization of NTR-NO₂

Fig. S2: ¹³C NMR spectrum of NTR-NO₂

Fig. S3: HRMS spectrum of NTR-NO₂

3. The measurement of fluorescence quantum yields

The quantum yield values were calculated by using coumarin-153 in ethanol ($\Phi = 0.38$) as a standard according to the following formula¹⁻³:

$$Y_u = Y_S \bullet \frac{F_u}{F_s} \bullet \frac{A_s}{A_u} \bullet \left[\frac{G_u}{G_s}\right]^2$$

Where, Y_u is the quantum yield of NTR-NH₂; Y_s is the quantum yield of coumarin-153 (Φ = 0.38) in ethanol; F is the integrated emission intensity (peak area); A is the absorbance at λ_{ex} ;

Compound	$\lambda_{abs} (nm)$	λ_{em} (nm)	Stokes shift (nm)	Yu
NTR-NH ₂	430	541	111	0.43

(DMSO:PBS=1:5, pH = 7.4)

4. The HRMS analysis of the products

Fig. S4: HRMS spectrum of NTR-NO₂

5. The fluorescent spectra of NTR-NO₂ responding with NaBH₄

Fig. S5: The fluorescence spectra of probe NTR-NO₂ (10μM) incubated with NTR (red) and NaBH₄ (black) in the presence of NADH (500μM)

6. Cytotoxicity assays of probe NTR-NO2 at different concentrations

Fig. S6: MTT assay for the viability of HeLa cells treated with various concentrations of probe NTR-NO₂ for 24h

7. Reference

- D. Guo, Z. P. Dong, C. Luo, W.Y. Zan, S. Q. Yan and X. J. Yao, RSC Adv., 2014, 4, 5718-5725.
 C. Kar, M. A. Adhikari, A. Ramesh and G. Das, Inorg. Chem., 2013, 52, 743-752.
 D. R. Haynes, A. Tokmakoff, S. M. George, Chemical Physics Letters, 1993, 214, 50-56. 1.
- 2. 3.