Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019.

Electronic Supplementary Information

Boosting the Hydrogen Evolution Reaction Activity of Ru in Alkaline and Neutral Media by Accelerating Water Dissociation

Lin Tang, Junjie Yu, Yang Zhang, Zaozao Tang, and Yong Qin*

^a Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China. E-mail: qinyong@cczu.edu.cn

*Corresponding authors: E-mail: qinyong@cczu.edu.cn

Fig. S1 Surface configuration of the four different catalysts used for the calculation

Fig. S2 XRD pattern of the Ru and Cr₂O₃ with different molar ratios in Ru-Cr₂O₃/NG.

Fig. S3 SEM image of Ru-Cr₂O₃/NG.

Fig. S4 XPS survey of Ru-Cr₂O₃/NG.

Fig. S5 The electrocatalytic performance of Ru and Cr_2O_3 with different molar ratios in Ru-Cr₂O₃/NG for HER in alkaline (1 M KOH) (a, b) and neutral medium (1 M PBS) (c, d). LSV curves (a, c); Tafel plots (b, d); n is the molar ratio of Ru to Cr_2O_3 .

Fig. S6 The ECSA of the catalysts estimated by a double layer capacitance (Ca) measurement.

Fig. S7 TOF of Ru and Cr_2O_3 with different molar ratios in Ru- Cr_2O_3/NG , Ru/NG, Cr_2O_3/NG , 20 wt.% Pt/C and Ru/C in alkaline medium (1.0 M KOH).

Fig. S8 The comparison of the EIS of Ru-Cr₂O₃/NG, Ru/NG, Cr₂O₃/NG, 20 wt.% Pt/C and Ru/C.

Fig. S9 The LSV curves of Ru- Cr_2O_3/NG over 20000 cycles (a) and the I-t curves of Ru- Cr_2O_3/NG (b) in alkaline medium (1.0 M KOH) at -1.073V.

Fig. S10 TEM images of Ru-Cr₂O₃/NG after long-term test.

Fig. S11 The LSV curves of Ru- Cr_2O_3/NG over 20000 cycles (a) and the I-t curves of Ru- Cr_2O_3/NG (b) in neutral medium (1.0 M PBS) at -0.652V.

wt.%	Ru	Cr_2O_3
catalyst		
Ru-Cr ₂ O ₃ /NG	17.0	1.8
Ru/NG	19.6	0
Cr ₂ O ₃ /NG	0	18.9
Ru/C	19.3	0

Tab. S1 The mass content of Ru and Cr_2O_3 on the NG

Catalysts	Electrolytes /(pH)	η10 (mV)	Tafel slope (mV dec ⁻¹)	TOF ^a (s ⁻¹)	Catalyst loading (mg cm ⁻²)	Ref.
Ru, Cr ₂ O ₃ /NG	1 M KOH	47	39	6.4	0.86	This
	1 M PBS	53	47	-	0.80	work
Ru/C ₃ N ₄ /C	0.1 M KOH	79	-	4.2	0.204	[1]
Ru/C-TiO ₂	1 M KOH	44	73.7	0.0223 ^b	0.2	[2]
Ru/MEOH/THF	0.1 M PBS	83	80	0.87	-	[3]
CoP@BCN	1 M KOH	122	59	-	0.4	F 4 1
	1 M PBS	215	52	-	0.4	[4]
Ru/NC	1 M KOH	17	32	10.2	0.24	[5]
RuP ₂ @NPC	1 M KOH	52	69	-	1.0	[7]
	1 M PBS	57	87	-	1.0	[0]
Mo ₂ C@2D-NPC	1 M KOH	45	46	-	0.247	[7]
MoP ₂ NS/CC	1 M KOH	67	70	-	7.0	F01
	1 M PBS	85	98.3	-	7.8	[8]
CoP/CC	1 M KOH	209	129	-	0.02	[0]
	1 M PBS	106	93	-	0.92	[9]
Rh_2P	1 M KOH	30	50	-	0.15	[10]
	1 M PBS	38	46	-	0.15	[10]

Tab. S2 Comparison of HER performance in alkaline/neutral media for Ru, Cr₂O₃/NG with other HER electrocatalysts.

a The values are calculated based on overpotential of 100 mV, except that b is at an overpotential of 150mV.

Surface	$\Delta E_H (eV)$	$\Delta \boldsymbol{E}_{\boldsymbol{OH}} (\mathrm{eV})$
Ru	-0.15	0.20
Ru/NG	-1.18	-0.88
Ru/Cr ₂ O ₃	-1.64	-1.26
Ru-Cr ₂ O ₃ /NG	-1.82	-2.05

Tab. S3 Binding energies of H^+ and OH^- on various surfaces

References

[1] Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, M. Jaroniec and S. Qiao, J. Am. Chem.

Soc., 2016, 138, 16174.

- [2] Y. J. Wang, Q. X. Zhu, T. P. Xie, Y. Peng, S.L. Liu and J. K. Wang, Chem. Electro. Chem., 2020, 7, 1182.
- [3] S. Drouet, J. Creus, V. Collière, C. Amiens, J. Garc á-Antón, X. Sala and K. Philippot, Chem. Commun., 2017, 53, 11713.
- [4] H. Tabassum, W. Guo, W. Meng, A. Mahmood, R. Zhao, Q. F. Wang and R. Q. Zou, Adv. Energy Mater., 2017, 7, 1601671.
- [5] J. W. Liu, G. Z. Ding, J. Y. Yu, X. G. Liu, X. F. Zhang, J. J Guo, J. C. Zhang, W. Renc and R. C. Che, *J. Mater. Chem. A.*, 2019, **7**, 18072.
- [6] Z. H. Pu, I. S. Amiinu, Z. K. Kou, W. Q. Li and S. C. Mu, Angew. Chem. Int. Ed., 2017, 56, 11559.
- [7] C. Lu, D. Tranca, J. Zhang, F. R. Hern ández, Y. Su, X. Zhuang, F. Zhang, G. Seifert and X. Feng, ACS Nano., 2017, 11, 3933.
- [8] W. Zhu, C. Tang, D. Liu, J. Wang, A. Asiric and X. Sun, J. Mater. Chem. A., 2016, 4, 7169.
- [9] J. Q. Tian, Q. Liu, A. M. Asiri and X. P. Sun, J. Am. Chem. Soc., 2014, 136, 7587.
- [10] F. L. Yang, Y. M. Zhao, Y. S. Du, Y. T. Chen, G. Z. Cheng, S. L. Chen and W. Luo, Adv. Energy Mater., 2018, 8, 1703489.