SUPPORTING INFORMATION

<u>for</u>

Coronene diimide-based '*bowl*' nanostructures as Red Emitter for analysis of Latent fingerprints and metal ion detection

Prabhpreet Singh*a and Poonam Sharmab

^aDepartment of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143 005, India.Tel: +91-84271-01534

Email: prabhpreet.chem@gndu.ac.in

TABLE OF CONTENTS

1.	Experimental section, procedures for sample preparation	1-3
2.	Scheme and characterization data of CDI 2 (Scheme 1 and Figure S1a-e)	3-7
3.	TD-DFT calculation of CDI 2 (Figure S2)	7
4.	Absorption spectrum (10 μ M) of CDI 2 in chloroform (Figure S3)	8
5.	Emission spectrum and CIE-1931 plots of solid PDI I (Figure S4).	8
6.	Absorption and emission data of CDI 2 (10 μ M) in different ratios of H ₂ O and DMSO(Figure S5 and Table S1).	9
7.	AFM Micrographs of CDI 2 (Figure S 6a-f).	10-12
8.	Metal Study and titration plots of CDI 2 towards metal sensing (Figure S7-10).	12-14
9.	Absorption and emission spectra of CDI 2 (10 μ M) in different solvents. (Figure S11)	14
10.	Comparison of some previously reported fluorescent materials for LFP development (Table S2)	14-16

1. Experimental section

Materials and reagents

All the chemicals were purchased from sigma aldrich under HPLC grade. Milli-Q water was used during analysis. Non-porous materials to deposit fingerprints, such as aluminum foil, glass slides, metal surfaces etc. were purchased from nearby market.

Instrumentation

1-D (¹H and ¹³C) and 2-D (COSEY) spectra were recorded at 500/125 MHz using Bruker Ascend 500 spectrometer using CDCl₃ as solvents. Fourier transform infrared (FT-IR) spectrum of synthesized material was recorded on Cary 630 FTIR spectrometer (Agilent Technologies). Absorption and Emission spectra were recorded on Shimadzu-1900 spectrophotometer and Shimadzu-RF 6000 spectrofluorometers (Shimadzu, Japan), respectively, using quartz cuvettes with a slit width of 5 nm at room temperature. Atomic force microscope (AFM) to image 3-D textures of surface were recorded on Tosca 400 instrument developed by Anton Paar. DLS data was recorded at 25.0 ± 0.1°C using a light scattering apparatus, Zetasizer, Nano-ZS, Nano Series, Malvern Instruments (Malvern, U.K.). Photographs of the developed fingerprints were taken under a UV lamp (365 nm).

Electrochemical Studies

Metrohm Autolab PGSTAT302N electrochemical workstation was employed for recording cyclic voltammetry (CV) at room temperature. Three-electrode cell system containing a Pt working electrode, Pt wire as counter electrode and Ag/Ag⁺ (0.1 M AgNO₃ in CH₃CN) as reference electrode have been used. Cyclic voltammogram (CV) was recoded at a scan rate of 50 mVs⁻¹ in the potential range of -1.6 to 2.0 V vs Ag/Ag⁺. The DCM was used as organic solvent and 0.1 M tetrabutylammonium perchlorate (TBAP) as supporting electrolyte for the voltammetry measurement. The NOVA software was used to collect, plot and analyze the raw data of electrochemical measurements of CDI 2 compound. The HOMO and LUMO energy levels of CDI 2 were calculated from the cyclic voltammogram of CDI 2 by using the equation $E_{LUMO} = -[E_{red}(onset) + 4.4]$ eV and $E_{HOMO} = -[E_{ox}(onset) + 4.4]$ eV.

Thermal Gravity Analysis (TGA)

The thermogravimetric analysis (TGA) of **CDI 2** was carried out on HITACHI thermogravimetric analyzer (Model STA7200) under N_2 atmosphere. The non-isothermal decomposition was recorded at a fixed heating rate of 10 °C/min ranging from 25 °C to 1000 °C. A platinum crucible was used to hold sample in pan. Initially 4.45 mg sample was taken to run the experiment.

UV-Visible and Fluorescence Studies

Stock solutions for various measurements of **CDI 2** were prepared in DMSO and dilutions of these stock solutions were used for the photo physical measurements. The solutions were diluted with DMSO and water before taking the readings in quartz cells. All absorption and fluorescence scans were processed in ExcelTM to produce all graphs shown.

Sample preparation for DLS and AFM measurements

The stock solutions of **CDI 2** (1 mM, DMSO) and water were filtered through Millipore membrane filter (Acrodisc syringe filter, 0.2 μ m Supor membrane) before measurements to remove suspended impurities. Solutions (10 μ M concentration) of **CDI 2** in DMSO and H₂O-DMSO (1:1 v/v; 9:1 v/v) were prepared. 2 mL of each of these solutions was taken in glass cuvette to record the DLS spectrum. Samples for AFM analysis were prepared by drop cast method (~5 μ L of aliquot of prepared sample) on glass slides.

Colour purity index

Colour purity of **CDI 2** was also calculated using the Colour Calculator software from Osram Sylvania Incorporated according to equations defined by the CIE (International Commission on Illumination).

Method for Latent fingerprint development

Volunteers were chosen to collect fingerprints on various substrates. Before the collection of fingerprints on various substrates, the donors were asked to wash their hands thoroughly with handwash and dry them properly in air to remove the oily dust. Then fingerprints were collected by softly rubbing the finertip across forehead and then deposited on the substrates with minimum pressure. Then these LFPs were developed with **CDI 2** using powder-dusting method. These developed fingerprints were visualized under 365 nm illumination and captured using the mobile phone camera. The powder-dusting procedure in our system is advantageous over previous systems because no additive or cyanoacrylate fuming, professional training and heavy instrumentation required to image LFPs on non-porous substrates.

Synthetic Strategy of CDI 2

The **PDI I** (50 mg, 0.079 mmol) was dissolved in 5-7 mL CH₃CN in a round bottom flask and then irradiated by sunlight for 7-8 h with continuous stirring. Consumption of the starting material during the reaction was monitored through TLC in CHCl₃. Upon consumption of the starting material (TLC), the solvent was removed by using rotatory evaporator to get reddishorange colored crude product. Further purification was performed by chromatography on silica gel (SiO₂) in Chloroform: Hexane 9:1 to yield orange coloured product (48.2 mg, 96.2%).

¹**H NMR (500 MHz, CDCl₃, 25 °C):** δ 10.02 (s, 1H), 9.22 (s, 1H), 9.17 (m, 3H), 9.02 (d, J = 8.1 Hz, 1H), 8.56 (s, 1H), 8.41 (d, J = 7.8 Hz, 1H), 5.28 – 5.17 (m, 2H), 5.02 (d, J = 2.3 Hz, 2H), 2.66 (t, J = 2.3 Hz, 1H), 2.49 – 2.36 (m, 4H), 2.16 – 2.03 (m, 4H), 1.06 (m, 12H) (Figure S1a-b).

¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 150.06, 134.30, 133.44, 132.84, 130.28, 129.49, 128.78, 128.65, 127.35, 126.83, 125.18, 124.80, 124.61, 124.51, 124.05, 79.19, 75.54, 62.46, 59.57, 29.83, 25.24, 11.45 (Figure S1c).

FT- IR spectrum (ATR): v_{max} [cm⁻¹] = 2929.7, 2877.5, 2340.8, 2117.1, 1915.9, 1699.6, 1654.9, 1595.3, 1423.8, 1312.0, 1252.4, 1155.5, 1043.7, 1006.3, 931.8, 805.1, 745.4 (Figure S1e).

UV/Vis (CHCl₃): $\lambda_{max}(\varepsilon) = 473$ nm (20300), 508 nm (30600) (Figure S3).

Scheme S1: Synthetic scheme to prepare CDI 2 through photocyclization of PDI 1 in CH₃CN, 7-8 h.

2. Characterization data of CDI 2

Figure S1a: ¹H NMR spectrum of CDI 2 in CDCl₃.

Figure S1b: Comparison of ¹H NMR spectrum of OPR-PDI and CDI 2 in CDCl₃.

Figure S1c: ¹³C NMR spectrum of CDI 2 with one drop of TFA in CDCl₃.

Figure S1d: ¹H-¹H Correlation (COSEY) spectrum of CDI 2 in CDCl₃.

Figure S1e: FTIR spectrum of CDI 2.

Figure S2: UV-Vis spectrum of **CDI 2** calculated in gas phase using time dependent-density functional theory (TD-DFT) calculations at the B3LYP/6-31G basis Set.

Figure S3: Absorption spectrum (10 μ M) of CDI 2 in chloroform.

Figure S4: (a) Emission spectrum of solid PDI 1 and (b) CIE-1931 plots corresponding to emission data of PDI 1.

Figure S5: a) Absorption and b) emission spectra of CDI 2 (10 μ M) in different ratios of H₂O and DMSO.

Table S1: Franck-Condon factor (A₀₋₀/A₀₋₁) values for CDI 2 in 0–90% H₂O-DMSO binary mixtures.

	508 nm	474 nm	
Water Ratio(%)	A ₀₋₀	A ₀₋₁	A_{0-0}/A_{0-1}
0	14757.82	11035.17	1.337344
10	4129.154	4222.331	0.977932
20	2195.851	2562.092	0.857054
30	2277.543	2412.461	0.944075
40	1344.093	1581.734	0.849759
50	1269.084	1742.703	0.728227
60	832.5588	1064.837	0.781865
70	545.8687	771.3584	0.707672
80	838.0484	997.5219	0.84013
90	728.8522	936.3005	0.778438

Figure S6a: Height trace extracted profile of AFM micrograph of **CDI 2** in DMSO showing ovaloid morphology with diameter graph.

Figure S6b: AFM micrograph of **CDI 2** in 50% H₂O-DMSO binary mixture clearly showing oval and spherical morphology

Figure S6c: Height trace extracted profile of AFM micrographs of **CDI 2** in 50% H₂O-DMSO binary mixture showing spherical morphology with diameter graph.

Figure S6d: AFM micrograph of **CDI 2** in 90% H₂O-DMSO binary mixture showing diameter of hollow cavity in the centre of interlinked fibroid morphology calculated by imagej software.

Figure S6e: Height trace extracted profile of AFM micrograph of **CDI 2** in 90% H₂O-DMSO binary mixture showing interlinked fibroid morphology with diameter graph and depth of the cavity.

Figure S6f: Variation of the gray value of AFM micrograph of **CDI 2** in 90% H₂O-DMSO binary mixture also showing inner hollow cavity.

Figure S7: Emission spectra of **CDI 2** (5 μ M) in the presence of different metal analytes recorded in 90% HEPES buffer : DMSO (10⁻² M, pH 7.2) solution; slit width (Ex/Em) = 15/10 nm. Plot of (b) I/Io(emission) versus metal equivalents added.

Figure S8: Emission spectra of **CDI 2** (5 μ M) in the presence of Cu²⁺ ions recorded in 90% HEPES buffer : DMSO (10⁻² M, pH 7.2) solution; slit width (Ex/Em) = 15/10 nm. Plot of (b) I/Io(emission) versus concentrations of Pd⁰ ions to determine the lowest detection limits.

Figure S9: Emission spectra of **CDI 2** (5 μ M) in the presence of Cu²⁺ ions recorded in 90% HEPES buffer : DMSO (10⁻² M, pH 7.2) solution; slit width (Ex/Em) = 15/10 nm. Plot of (b) I/Io(emission) versus concentrations of Pd²⁺ ions to determine the lowest detection limits.

Figure S10: Emission spectra of **CDI 2** (5 μ M) in the presence of Cu²⁺ ions recorded in 90% HEPES buffer : DMSO (10⁻² M, pH 7.2) solution; slit width (Ex/Em) = 15/10 nm. Plot of (b) I/Io(emission) versus concentrations of Cu²⁺ ions to determine the lowest detection limits.

Figure S11: Absorption and emission spectra of CDI 2 (10 µM) in different solvents.

Ref.	Type of quantificatio n	Additives Added/Pre or Post Treatment	Method to develop	Type of Surface Used	Visual Assesment	Emission Intensity	Develop ment Time	Features Extracted
1.	Fluorescent Nanomaterials	polyvinylpyrr olidone PVP	powder dusting	porous and	under illumination method	Not mentioned	4 min. 30 s	Level 3
		county	method	nonporous	memou		n at 455 and 525 nm	
2.	NIR fluorescent polymer	ninhydrin	Solid spray	porous and	Also visible to naked eyes	Not mentioned	-	Level 3

Table S2: Comparison of some previously reported fluorescent materials for LFP development

				nonporous				
3.	NIR-to-NIR upconversion nanoparticles of β- NaYF4:2% Tm, 48%Yb	-	powder dusting method	-	under illumination method	Not mentioned	0.5–1 h	Level 2
4.	Al(III) Schiff Base	Au ³⁺	powder dusting method	smooth surfaces	under illumination method	418- 572 nm	-	Not mentioned
5.	Fluorescent dyes	-	0.1g/10 0mL dye solution	sticky side of adhesive tapes	under illumination method	447-499 nm	0.5–2 min.	Not explained
6.	Fluorescent dyes	pretreatment with (0.01 M, pH 12.0) NaOH Sol.	2.0×10 ⁻ 4 M dye in ethanol: aqueous sodium hydroxi de (1:1,v/v)	porous	naked eye and under illumination method	Not mentioned	1 h and 40 min.	Not explained
7.	Fluorescent Metal Complexes emitting deep blue light	Zn ²⁺ metal added	powder dusting method	nonporous	under illumination method (366 nm)	Not mentioned	-	Not explained
8.	AIE active Fluorescent dyes	-	70% H ₂ O:TH Fmixtur e (0.3 mM)	non- porous	under UV 365 nm light	Not mentioned	3 min.	Level 2
9.	Dual state emission platform	traditional magnetic powders	powder dusting method	-	nonporous	under illuminati on method	Not mention ed	Level 2
10.	Fluorescent nanomaterial	-	50% H ₂ O:CH ₃ CN mixture	nonporous	under illumination method	Not mentioned	-	Level 2
11.	Fluorescent dyes	pretreatment of bloody stains with ethanol: water (40:60) in 2% 5- sulfosalicylic	0.1g/10 0mL dye solution	porous, semi- porous and non- porous	bloody fingermark	Not mentioned	-	Not explained

		acid						
12.	AIE-active	cyanoacrylate	CH ₃ CN	nonporous	under	Not	20	Level 3
	luminogen	fuming	-water		illumination	mentioned	minutes	
			solution		method			
			aggregat					
			es					

Table S3: Comparison of some previously reported fluorescent materials based on benzocoronene.

				-	
	S. No.	Synthetic Mechanism of	Self-assemblies	Energy and	Applications
		CDI	Properties	electron transfer	
				properties	
-	1.	Photo-cyclization	Not mentioned	Visible-light	Photo-responsive materials
				triggered photo-	
				annulation	
				approach	
_			••••••••••		
	2.	Imidization with 2,6-	Not mentioned	Non-fullerene	Optoelectronic materials
		diisopropylaniiine		acceptors and	
				tuneable optical	
				and redox	
				properties	
	3.	Not mentioned	Not mentioned	Electron	To study ultrafast
				acceptors	photoinduced
					intramolecular electron
					_
					transfer
-	4.	Not mentioned	Surface	4-octyltetradecyl	n-type organic
			morphology	side chains	semiconductors
			Studied with AFM	exhibits the	
				highest	
				- I	
				electron mobility	
				01 0.16 CHI-V -S -	
	5.	Cyclodehydrogenation	Showing		Used as a "turn-on" probe
		with DDQ in dry CH ₂ Cl ₂	thermotropic		for Pb2+or K+
		at			
			liquid crystalline		
		0°C	behavior		
	6.	Benzogenic Diels–Alder	Self-assembled	Not mentioned	Showing peroxidase-like
		reaction	nanofibers in		catalytic activity for
			aqueous solution		H2O2and glucose sensing
	7.	Sunlight-driven	Self-assembled	Not mentioned	Biolabeling and visualization
		photocyclization inCH ₂ Cl ₂	(fibre-to-disc)		of latent fingerprints on
1		1	1		1

		fluorescent		different surfaces
		aggregates		
8.	Sunlight-driven	Aggregation in 30 %	Not mentioned	Imaging of latent
	photocyclization	DMF: H2O		fingerprints on non-porous
				and porous substrates
	Photocyclization in	Nano-sized	Red emitters with	For visualization of latent
	CH₃CN	interlinked fibre	CIE coordinates	fingerprints (LFPs) and metal
Present		structures forming	(x,y) of (0.67,	ion detection in aqueous
Manuscript		' <i>bowl</i> ' shaped	0.33) with 100 %	medium
		nanoarchitecture	colour purity	