Supporting information

Tunable and Sustainable Photocatalytic Activity of Photochromic Y-

WO₃ under Visible Light Irradiation

Qiansheng Li,^a Hui Zhang,^a Yunhui Yan,^a Zhijun Yang,^a Yingling Wang,^a* Guoguang Liu ^{b,c} and Tianjun Ni ^{a,b}*

^a School of Basic Medical Science, Xinxiang Medical University, Xinxiang 453003, China;

Liqs1996@163.com (Q.L.); zhanghui610710@163.com (H.Z.); yanyunhui@xxmu.edu.cn (Y.Y.); zjyang@xxmu.edu.cn (Z.Y.)

- ^b School of Environment, Henan Normal University, Xinxiang 453007, China
- ^c Faculty of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; liugg615@163.com (G.L.)

* Correspondence: wang2002yl@126.com (Y. W.); tjni@xxmu.edu.cn (T.N.); Tel.: +86-373-3831859

Experimental part

Fig. S1. SEM and TEM images of B-WO3; SEM (a); TEM (b, c); HRTEM (d).

Fig. S2. Full XPS spectra of the as-synthesized samples.

Fig. S3. Photodegradation activities of RhB under different pH values.

Taking the suitable adsorption-desorption equilibrium and high photocatalytic activity into consideration, the appropriate pH of 4 was adopted.

Fig. S4. The adsorption-desorption equilibrium of TCH in dark with the inserts for the color of Y-WO₃.

When Y-WO₃ and B-WO₃ are both catalyzed under dark conditions for 150 min, the catalytic rates

of Y-WO₃ and B-WO₃ are almost at the same level and there is no obvious degradation and coloration

of Y-WO₃, indicating no transition from W⁶⁺ to W⁵⁺ under dark conditions.