Supporting Information

Mechanistic Study of Nucleophilic Fluorination for the Synthesis of Fluorine-18 Labeled Fluoroform with High Molar Activity from *N*-Difluoromethyltriazolium Triflate

Jin Young Chai,^a Hyojin Cha,^a Sung-Sik Lee,^b Young-Ho Oh,^b Sungyul Lee,^{b,*} and Dae Yoon Chi^{a,*}

^aDepartment of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Korea

^bDepartment of Applied Chemistry, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu,

Yongin-si, Gyeonggi-do 17104, Korea

dychi@sogang.ac.kr

Table of Contents

1. General information	
2. Experimental section	
3. References	
4. ¹ H NMR experiments for Table 1–4	S7
5. ¹ H NMR experiments, ¹⁹ F NMR, and Table S1 for Table 5	
6. Determination of modified values for Table 6	
7. NMR spectra of compounds 1, 5, 7, 8	S29
8. Cartesian coordinates	S34
9. Natural population analysis	S48

1. General information

All the chemicals were purchased from commercial sources and used without further purification. Flash column chromatography was performed on Merck silica gel 60 (230–400 mesh). Melting points were determined on a Kruss melting point apparatus. ¹H and ¹³C NMR spectra were recorded on Varian 400 MHz NMR spectrometer. ¹⁹F NMR spectra were recorded on Varian 500 MHz NMR spectrometer. ¹H NMR chemical shifts were determined relative to deuterated solvent peaks ($\delta = CD_3CN 1.94$ ppm, CDCl₃ 7.26 ppm and CD₃OD 3.31 ppm). ¹³C NMR chemical shifts were determined relative to deuterated solvent peaks ($\delta = CD_3CN 1.94$ ppm, CDCl₃ 7.26 ppm and CDcl₃ 77.16 ppm). ¹⁹F NMR chemical shifts were determined relative to deuterated solvent peaks ($\delta = CD_3CN 1.32$ ppm and CDCl₃ 77.16 ppm). ¹⁹F NMR chemical shifts were determined relative to PhCF₃ at δ -64.24 ppm (in CD₃OD) or δ -63.10 ppm (in CD₃CN).¹ The High resolution mass spectra were obtained from Bruker Compact Ultra High Resolution ESI Q-TOF mass spectrometer at Organic Chemistry Research Center of Sogang University. The elemental analysis was performed on Thermo Scientific FLASH 2000 elemental analyzer at Organic Chemistry Research Center of Sogang University.

2. Experimental section

Synthesis of Precursors 1 and 7.

1-(Difluoromethyl)-4-phenyl-1H-1,2,3-triazole (3).

$$H \xrightarrow{K} F$$

Prepared by a literature procedure.²

1-(Difluoromethyl)-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium Triflate (1).

To 1-(difluoromethyl)-4-phenyl-1*H*-1,2,3-triazole (**3**, 500 mg, 2.56 mmol) dissolved in CH₂Cl₂ (10 mL) in a pressure tube was added methyl trifluoromethanesulfonate (MeOTf, 0.820 mL, 7.48 mmol) and the pressure tube was tightly capped. The reaction mixture was stirred at 50 °C for 3 h. The mixture was transferred to a 20 mL vial and dried in vacuo to obtain 727 mg of the product as a white solid (79%): mp 104–109 °C; ¹H NMR (400 MHz, CD₃CN) δ 8.95 (s, 1H), 7.94 (t, *J* = 57.4 Hz, 1H), 7.75–7.64 (m, 5H), 4.29 (s, 3H); ¹³C NMR (100 MHz, CD₃CN) δ 145.4, 133.3, 130.64, 130.61, 127.9, 122.5, 121.9 (q, *J* = 318.7 Hz), 111.0 (t, *J* = 264.3 Hz), 40.7; ¹⁹F NMR (470 MHz, CD₃CN) δ -79.24 (s, 3F), -99.91 (d, *J* = 57.8 Hz, 2F). HRMS (ESI/Q-TOF) m/z: [M-OTf]⁺ Calcd for C₁₀H₁₀F₂N₃ 210.0837; Found 210.0831. Anal. Calcd for C₁₁H₁₀F₅N₃O₃S: C, 36.77; H, 2.81; N, 11.70. Found: C, 36.68; H, 2.97; N, 11.68.

1-(Difluoromethyl)-1H-benzo[d][1,2,3]triazole (9).

$$H \xrightarrow{N \in \mathbb{N}}_{F \in F} F$$

Prepared by a literature procedure.²

1-(Difluoromethyl)-3-methyl-1H-benzo[d][1,2,3]triazol-3-ium Triflate (7).

$$\stackrel{N = N^{+}}{F} \xrightarrow{O} O$$

To 1-(difluoromethyl)-1*H*-benzo[*d*][1,2,3]triazole (**9**, 84.6 mg, 0.50 mmol) dissolved in CH₂Cl₂ (2 mL) in a screw top vial was added MeOTf (0.160 mL, 1.46 mmol) and the screw top vial was tightly capped. The reaction mixture was stirred at 50 °C for 50 min. The mixture was transferred to a 20 mL vial and dried in vacuo to obtain 156 mg of the product as a brown solid (93%): mp 125–138 °C; ¹H NMR (400 MHz, CD₃CN) δ 8.27-8.23 (m, 2H), 8.26 (t, *J* = 56.8 Hz, 1H), 8.14-8.05 (m, 2H), 4.67 (s, 3H); ¹³C NMR (100 MHz, CD₃CN) δ 137.2, 134.8, 133.6, 133.2, 121.9 (q, *J* = 319.0 Hz), 115.6, 114.3, 112.1 (t, *J* = 261.5 Hz), 40.2; ¹⁹F NMR (470 MHz, CD₃CN) δ -79.16 (s, 3F), -99.52 (d, *J* = 56.9 Hz, 2F). HRMS (ESI/Q-TOF) m/z: [M-OTf]⁺ Calcd for C₈H₈F₂N₃ 184.0681; Found 184.0682.

General Procedure for Fluorination Using Precursor 1.

Method A (nucleophile: CsF, Table 2, entry 1)

To CsF (25.5 mg, 0.168 mmol) in an NMR tube was added CD₃CN (0.15 mL). To precursor **1** (30.0 mg, 0.084 mmol) in a 20 mL vial was added CD₃CN (0.6 mL). The solution of the 20 mL vial was transferred to the NMR tube. The NMR tube was sealed with a cap and placed at 80 °C for 1 h. The reaction mixture was analyzed by ¹H NMR.

Method B (nucleophile: TBAF, Table 2, entry 8)

To TBAF·H₂O (131.8 mg, 0.504 mmol) in an NMR tube was added CD₃CN (0.4 mL). To precursor **1** (30.0 mg, 0.084 mmol) in a 20 mL vial was added CD₃CN (0.35 mL). The solution of the 20 mL vial was transferred to the NMR tube. The NMR tube was sealed with a cap and placed at rt for 10 min. The reaction mixture was analyzed by ¹H NMR.

Fluoroform (2).3

$$_{F}^{H} \times_{F}^{F}$$

¹H NMR (400 MHz, CD₃CN) δ 6.79 (q, *J* = 79.6 Hz, 1H); ¹⁹F NMR (470 MHz, CD₃OD) δ -80.43 (d, *J* = 79.4 Hz, 3F). *I-Methyl-5-phenyl-1H-1,2,3-triazole* (**5**).⁴

Purification by flash column chromatography (hexane/EtOAc = 50/50). Yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 1H), 7.48–7.44 (m, 3H), 7.42–7.38 (m, 2H), 4.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.1, 132.9, 129.5, 129.1, 128.6, 127.0, 35.5. HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₉H₉N₃Na 182.0689; Found 182.0688. (CAS 15966-55-9)

Procedure for Table 3, entry 1 (nucleophile: 1-phenylpiperazine)

To precursor **1** (30.0 mg, 0.084 mmol) in a 20 mL vial was added CD_3CN (0.4 mL). The solution of the 20 mL vial was transferred to an NMR tube. To 1-phenylpiperazine (40.9 mg, 0.252 mmol) in a 4 mL vial was added CD_3CN (0.35 mL). The solution of the 4 mL vial was transferred to the NMR tube. The NMR tube was sealed with a cap and placed at 80 °C for 5.5 h. The reaction mixture was analyzed by ¹H NMR.

Procedure for Experimental Evidence (Table 5, entry 1)

To TBAF·3H₂O (159.0 mg, 0.504 mmol) in an NMR tube was added CD₃OD (0.4 mL). To precursor 1 (30.0 mg, 0.084 mmol) in a 20 mL vial was added CD₃OD (0.35 mL) and PhCF₃ (10.31 μ L). The solution of the 20 mL vial was transferred to the NMR tube. The NMR tube was sealed with a cap and placed at 80 °C for 17 h. The reaction mixture was analyzed by ¹H NMR and ¹⁹F NMR.

Procedure for Table 5, entry 2

To TBAF·3H₂O (159.0 mg, 0.504 mmol) in an NMR tube was added CD₃OD (0.1 mL) and CD₃CN (0.3 mL). To precursor **1** (30.0 mg, 0.084 mmol) in a 20 mL vial was added CD₃CN (0.35 mL) and PhCF₃ (10.31 μ L). The solution of the 20 mL vial was transferred to the NMR tube. The NMR tube was sealed with a cap and placed at 80 °C for 20 min. The reaction mixture was analyzed by ¹H NMR and ¹⁹F NMR.

General Procedure for Experimental Evidence Using CsF

Method C (Table 5, entry 3)

An NMR tube was taken into the glovebox, and CsF (76.6 mg, 0.504 mmol) was added. The NMR tube was capped with a rubber septum and taken out of the glovebox. To precursor **1** (30.0 mg, 0.084 mmol) in a 20 mL vial was added CD₃CN (0.65 mL), CD₃OD (0.1 mL) and PhCF₃ (10.31 μ L). The solution of the 20 mL vial was transferred to the NMR tube via a syringe. The rubber septum was replaced with a cap. The NMR tube was sealed with the cap and placed at 80 °C for 5 h. The reaction mixture was analyzed by ¹H NMR and ¹⁹F NMR.

Procedure for Table 5, entry 4

Method C. To precursor 1 (30.0 mg, 0.084 mmol) in a 20 mL vial was added CD₃CN (0.71 mL), CD₃OD (40 µL) and PhCF₃

(10.31 µL).

Procedure for Table 5, entry 5

Method C. To precursor 1 (30.0 mg, 0.084 mmol) in a 20 mL vial was added CD₃CN (0.65 mL), (CD₃)₃COD (0.1 mL) and PhCF₃ (10.31 μ L).

Procedure for Table 5, entry 6

Method C. To precursor 1 (30.0 mg, 0.084 mmol) in a 20 mL vial was added CD₃CN (0.71 mL), (CD₃)₃COD (40 µL) and

PhCF₃ (10.31 µL).

Fluoroform-d (11).5

$$F \xrightarrow{F} F$$

¹⁹F NMR (470 MHz, CD₃OD) δ -81.19 (t, J = 12.2 Hz, 3F).

(Difluoromethoxy) methane- d_3 (10a).

¹H NMR (400 MHz, CD₃OD) δ 6.34 (t, J = 75.8 Hz, 1H); ¹⁹F NMR (470 MHz, CD₃OD) δ -87.95 (d, J = 75.7 Hz, 2F).

(Difluoromethoxy) methane- d_4 (12a).

¹⁹F NMR (470 MHz, CD₃OD) δ -88.78 (t, *J* = 11.8 Hz, 2F).

2-(Difluoromethoxy)-2-(methyl- d_3)propane-1,1,1,3,3,3- d_6 (10b).

¹H NMR (400 MHz, CD₃CN/(CD₃)₃COD (v/v= 6.5:1)) δ 6.45 (t, *J* = 77.2 Hz, 1H); ¹⁹F NMR (470 MHz, CD₃CN/(CD₃)₃COD

 $(v/v=6.5:1)) \delta$ -77.01 (d, J = 77.1 Hz, 2F).

2-(Difluoromethoxy-d)-2-(methyl-d₃)propane-1,1,1,3,3,3-d₆(12b).

¹⁹F NMR (470 MHz, CD₃CN/(CD₃)₃COD (v/v= 6.5:1)) δ -77.77 (t, J = 11.8 Hz, 2F).

Procedure for Reaction Using Precursor 7 (Nucleophile: CsF, Table 4, entry 1)

To precursor 7 (30.0 mg, 0.090 mmol) in a 20 mL vial was added CD_3CN (0.75 mL). The solution of the 20 mL vial was transferred to an NMR tube. CsF (27.3 mg, 0.180 mmol) was added to the NMR tube. The NMR tube was sealed with a cap and placed at 80 °C for 24 h. The reaction mixture was analyzed by ¹H NMR.

Purification by flash column chromatography (hexane/EtOAc = 70/30). Yellow solid: mp 62–64 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.4 Hz, 1H), 7.44–7.37 (m, 2H), 7.28 (t, *J* = 8.2 Hz, 1H), 4.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 133.4, 127.2, 123.8, 119.7, 109.1, 34.1. HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₇H₇N₃Na 156.0532; Found 156.0532. (CAS 13351-73-0)

3. References

- 1. C. P. Rosenau, B. J. Jelier, A. D. Gossert and A. Togni, Angew. Chem. Int. Ed., 2018, 57, 9528-9533.
- 2. J. Y. Chai, H. Cha, H. B. Kim and D. Y. Chi, Tetrahedron, 2020, 76, 131370.
- (a) A. Zanardi, M. A. Novikov, E. Martin, J. Benet-Buchholz and V. V. Grushin, *J. Am. Chem. Soc.*, 2011, 133, 20901-20913; (b) N. S. Golubev, G. S. Denisov, S. Macholl, S. N. Smirnov, I. G. Shenderovich and P. M. Tolstoy, *Z. Phys. Chem.*, 2008, 222, 1225-1245; (c) J. Lin, Z. Li, J. Kan, S. Huang, W. Su and Y. Li, *Nat. Commun.*, 2017, 8, 14353.
- 4. S. Koguchi and K. Izawa, ACS Comb. Sci., 2014, 16, 381-385.
- (a) E. A. F. Fordyce, Y. Wang, T. Luebbers and H. W. Lam, *Chem. Commun.*, 2008, 1124-1126; (b) C. P. Johnston, T. H. West, R. E. Dooley, M. Reid, A. B. Jones, E. J. King, A. G. Leach and G. C. Lloyd-Jones, *J. Am. Chem. Soc.*, 2018, 140, 11112-11124.

Figure S1. ¹H NMR experiment in CD₃CN to investigate stability of precursor 1 for Table 1, entry 1.

Figure S3. ¹H NMR experiment in DMF- d_7 to investigate stability of precursor 1 for Table 1, entry 3.

Figure S4. ¹H NMR experiment in DMF- d_7 to investigate stability of precursor 1 for Table 1, entry 4.

Figure S5. ¹H NMR experiment in DMF- d_7 to investigate stability of precursor 1 for Table 1, entry 5.

Figure S6. ¹H NMR experiment for optimization using precursor **1** for Table 2, entry 1.

Figure S7. ¹H NMR experiment for optimization using precursor **1** for Table 2, entry 2.

Figure S9. ¹H NMR experiment for optimization using precursor 1 for Table 2, entry 4.

Figure S10. ¹H NMR experiment for optimization using precursor 1 for Table 2, entry 5.

Figure S11. ¹H NMR experiment for optimization using precursor 1 for Table 2, entry 6.

Figure S12. ¹H NMR experiment for optimization using precursor 1 for Table 2, entry 7.

Figure S13. ¹H NMR experiment for optimization using precursor 1 for Table 2, entry 8.

Figure S14. ¹H NMR experiment for optimization using precursor 1 for Table 2, entry 9.

Figure S15. ¹H NMR experiment for optimization using precursor 1 for Table 2, entry 10.

Figure S16. ¹H NMR experiment for optimization using precursor 1 for Table 2, entry 11.

Figure S17. ¹H NMR experiment using precursor 1 for Table 3, entry 1 (nucleophile: 1-phenylpiperazine).

Figure S18. ¹H NMR experiment using precursor 1 for Table 3, entry 2 (nucleophile: 1-phenylpiperazine).

Figure S19. ¹H NMR experiment using precursor 1 for Table 3, entry 3 (nucleophile: 1-phenylpiperazine).

Figure S21. ¹H NMR experiment using precursor 7 for Table 4, entry 1 (nucleophile: CsF).

Figure S23. ¹H NMR experiment using precursor 7 for Table 4, entry 3 (nucleophile: TBAF).

Figure S25. ¹H NMR experiment using precursor 7 for Table 4, entry 5 (nucleophile: 1-phenylpiperazine).

Figure S26. ¹H NMR experiment using precursor 7 for Table 4, entry 6 (nucleophile: 1-phenylpiperazine).

Figure S27. ¹H NMR experiment using precursor 7 for Table 4, entry 7 (nucleophile: 1-phenylpiperazine).

Figure S28. ¹H NMR experiment using precursor 7 for Table 4, entry 8 (nucleophile: 1-phenylpiperazine).

Figure S29. ¹H NMR experiment using precursor 1 and TBAF for Table 5, entry 1.

Figure S30. ¹⁹F NMR spectrum of the reaction mixture (Table 5, entry 1).

Figure S31. ¹H NMR experiment using precursor 1 and TBAF for Table 5, entry 2.

Figure S32. ¹⁹F NMR spectrum of the reaction mixture (Table 5, entry 2).

Figure S33. ¹H NMR experiment using precursor 1 and CsF for Table 5, entry 3.

Figure S34. ¹⁹F NMR spectrum of the reaction mixture (Table 5, entry 3).

Figure S35. ¹H NMR experiment using precursor 1 and CsF for Table 5, entry 4.

Figure S36. ¹⁹F NMR spectrum of the reaction mixture (Table 5, entry 4).

Figure S37. ¹H NMR experiment using precursor 1 and CsF for Table 5, entry 5.

Figure S38. ¹⁹F NMR spectrum of the reaction mixture (Table 5, entry 5).

Figure S39. ¹H NMR experiment using precursor 1 and CsF for Table 5, entry 6.

Figure S40. ¹⁹F NMR spectrum of the reaction mixture (Table 5, entry 6).

Table S1. Ratio of deuterium source/H ₂ O in reaction mixture for Table	5 ^a
--	----------------

			deuteri	um source			
entry	F ⁻ source	solvent	CD ₃ OD (mmol)	(CD ₃) ₃ COD (mmol)	ratio of 5 /H ₂ O ^b	H ₂ O (mmol) ^c	ratio of deuterium source/H ₂ O
1	TBAF	CD ₃ OD	18.464	-	1 : 51.285	4.308	4.29 : 1
2	TBAF	CD ₃ CN/CD ₃ OD (6.5:1)	2.462	-	1 : 18.465	1.551	1.59 : 1
3	CsF	CD ₃ CN/CD ₃ OD (6.5:1)	2.462	-	1 : 0.665	0.056	43.96 : 1
4	CsF	CD ₃ CN/CD ₃ OD (17.8:1)	0.985	-	1:0.450	0.038	25.92 : 1
5	CsF	CD ₃ CN/(CD ₃) ₃ COD (6.5:1)	-	1.061	1 : 1.660	0.139	7.63 : 1
6	CsF	CD ₃ CN/(CD ₃) ₃ COD (17.8:1)	-	0.424	1 : 0.965	0.081	5.23 : 1

^aAll reactions were carried out on a 0.084 mmol reaction scale of 1 in 0.75 mL of solvent in a sealed NMR tube. ^bRatio was

determined by ¹H NMR. ^cComplete conversion of **1** into **5** was observed in ¹H NMR.

6. Determination of modified values for Table 6

Table S2. Factors for equations S1-S4

entry	F-	ratio of deuterium		¹⁹ F NM	IR yiel	d	1	nodifie	ed valu	e
end y	source sour	source/H ₂ O	2	11	10a	12a	2	11	10a	12a
1	TBAF	\mathbf{x}_{d} : \mathbf{x}_{w}	f_2	f_{11}	f_{10a}	f _{12a}	y ₂	z ₁₁	y _{10a}	z _{12a}

The ratio of deuterium source and H_2O was indicated in Table S1. ¹⁹F NMR yields of products were indicated in Table 5. Modified values in Table 6 were calculated from equations S1–S4.

 z_{11} and y_2 were calculated from equations S1 and S2, respectively.

 z_{11} = yield of 14 via route (c) (= yield of 11 from 14 if reaction mixture contains only deuterium source and no H₂O)

 y_2 = yield of **2** via only route (a)

$z_{11}(x_d/(x_d + x_w)) = f_{11}$	(eqn. S1)
$y_2 + (x_w/(x_d + x_w))z_{11} = f_2$	(eqn. S2)

 $z_{12a} \mbox{ and } y_{10a} \mbox{ were calculated from equations S3 and S4, respectively.}$

 $z_{12a} = yield \text{ of } \mathbf{15a} \text{ via route (c) (= yield of } \mathbf{12a} \text{ from } \mathbf{15a} \text{ if reaction mixture contains only deuterium source and no } H_2O)$ $y_{10a} = yield \text{ of } \mathbf{10a} \text{ via only route (a)}$ $z_{12a}(x_d/(x_d + x_w)) = f_{12a}$ $y_{10a} + (x_w/(x_d + x_w))z_{12a} = f_{10a}$ (eqn. S4)

7. NMR spectra of compounds 1, 5, 7, 8

¹H, ¹³C and ¹⁹F NMR spectra of **1** (400, 100, 470 MHz, CD₃CN)

100 90 f1 (ppm) ____

5.0 5.0 4.5 f1 (ppm) 9.5 8.0 6.5 4.0 3.0 2.5 1.5 1.0 0.0 -(9.0 8.5 7.5 7.0 6.0 5.5 3.5 2.0 0.5

S33

8. Cartesian coordinates

(CsF-1)_{Pre}

С	1.338702	1.729334	-0.845771
С	2.193930	1.290461	0.134443
N	0.361971	2.069046	1.113382
Н	1.415597	1.723610	-1.921106
N	0.256186	2.190257	-0.181648
N	1.530134	1.539612	1.304570
С	-1.002747	2.694170	-0.721261
Н	-1.816917	2.586250	0.020000
С	1.985764	1.301308	2.675722
Н	1.409516	1.958476	3.322193
Н	1.803630	0.258475	2.925646
Н	3.045288	1.542349	2.729133
F	-1.249689	2.007514	-1.850397
F	-0.812711	3.982581	-1.080584
С	3.528164	0.687413	0.025408
С	3.860049	-0.455243	0.758339
С	4.451511	1.248136	-0.860765
С	5.120473	-1.022651	0.610930
Н	3.124403	-0.913753	1.408777
С	5.708023	0.671222	-1.004775
Н	4.186556	2.136122	-1.424366
С	6.044309	-0.461276	-0.267394
Н	5.376614	-1.911297	1.175926
Н	6.424743	1.108091	-1.690243
Н	7.025126	-0.909034	-0.380569
S	-0.238843	-1.577530	0.569535
0	0.812375	-1.367796	1.565568
0	-1.296450	-2.515316	0.945783
0	-0.723988	-0.354913	-0.081056
С	0.655197	-2.439560	-0.803262

F	1.211900	-3.570632	-0.371194
F	-0.181556	-2.741634	-1.796493
F	1.620652	-1.662750	-1.294701
Cs	-3.881008	-0.424567	-0.005523
F	-3.188773	2.302690	1.029657

(CsF-2)_{Pre}

С	-0.809326	2.453134	-0.567335
С	0.328154	2.274994	0.184254
N	-1.424173	1.971425	1.506351
Н	-0.953030	2.670797	-1.612592
N	-1.826530	2.256119	0.297778
N	-0.128968	1.991885	1.439648
С	-3.269002	2.281093	0.039470
Η	-3.717187	1.311411	0.237243
С	0.643470	1.720671	2.655007
Н	-0.037044	1.845162	3.493714
Η	1.051198	0.705873	2.615557
Н	1.450605	2.450335	2.708824
F	-3.426910	2.654160	-1.230010
F	-3.804142	3.225589	0.829653
С	1.734663	2.328924	-0.230009
С	2.675609	1.429837	0.282014
С	2.111716	3.265029	-1.198380
С	3.988304	1.479863	-0.177466
Η	2.405537	0.681045	1.024646
С	3.424519	3.303545	-1.650618
Η	1.380298	3.964884	-1.587707
С	4.365610	2.411791	-1.139826
Η	4.715724	0.780108	0.219056
Η	3.714022	4.032644	-2.398291
Η	5.390076	2.444636	-1.492587
S	-1.524630	-1.048362	-0.822570

0	-0.676122	-0.553113	0.268118
0	-2.472207	-0.069995	-1.358917
0	-0.816539	-1.860259	-1.812744
С	-2.617105	-2.270139	0.034735
F	-3.370537	-1.662974	0.951658
F	-3.426079	-2.878887	-0.830921
F	-1.884007	-3.200959	0.646185
Cs	2.005628	-2.322721	-0.077779
F	2.423624	-0.818172	2.457851

(PZ-1)_{Pre}

С	2.561387	1.397630	-0.597789
С	3.447563	0.856489	0.298723
N	1.680040	1.568617	1.430030
Н	2.593640	1.495486	-1.670682
N	1.512440	1.800458	0.156851
N	2.845596	1.010411	1.514736
С	0.273659	2.453150	-0.267768
Η	-0.540768	2.189219	0.396119
С	3.320605	0.556961	2.821336
Η	2.808615	1.147883	3.576547
Η	3.077370	-0.499286	2.929750
Η	4.395485	0.716395	2.870419
F	0.046170	2.066365	-1.525030
F	0.483756	3.783124	-0.281104
С	4.738682	0.188797	0.084186
С	4.944053	-1.101760	0.577619
С	5.739876	0.834145	-0.643803
С	6.159037	-1.738059	0.351760
Η	4.150023	-1.610635	1.112686
С	6.951321	0.189142	-0.867597
Н	5.570070	1.836329	-1.021513
С	7.162345	-1.093297	-0.367823

Η	6.317962	-2.740612	0.731092
Н	7.731585	0.690642	-1.427993
Н	8.108500	-1.592711	-0.542283
S	-0.011057	-1.367437	0.430292
0	-0.762349	-0.108134	0.495560
0	1.413959	-1.243288	0.754458
0	-0.682329	-2.532023	0.999385
С	0.020139	-1.723766	-1.387580
F	0.659625	-0.754068	-2.045252
F	0.651050	-2.873395	-1.636651
F	-1.213366	-1.814598	-1.885727
С	-3.285608	2.292507	0.886168
С	-2.984388	1.751802	-1.453925
С	-4.471733	1.403618	-1.539706
С	-4.768797	1.930625	0.778179
Н	-2.633650	2.155268	-2.406815
Η	-2.723755	1.411162	1.217504
Н	-3.146824	3.084452	1.626632
Н	-5.034537	2.314450	-1.772099
Η	-4.680604	0.687442	-2.333564
Η	-5.339307	2.817287	0.481946
Η	-5.156297	1.599479	1.738725
Η	-2.400678	0.852061	-1.229673
N	-2.712363	2.731565	-0.392825
Η	-3.146601	3.615476	-0.652124
N	-4.976709	0.909616	-0.256689
С	-4.788439	-0.437599	0.074426
С	-4.258994	-1.369543	-0.839574
С	-5.194858	-0.930920	1.332052
С	-4.167695	-2.720077	-0.516037
Н	-3.899954	-1.050867	-1.808109
С	-5.089920	-2.279382	1.643710
Н	-5.622793	-0.263798	2.068433

C -4.580380 -3.194317 0.723811 H -3.751220 -3.404552 -1.247779 H -5.421806 -2.617460 2.619732 H -4.500043 -4.245862 0.972005

$(PZ-1)_{TS}$

C -2.576253 -1.363378 -0.632560 C -3.476067 -0.808225 0.250732 N -1.836164 -1.766762 1.380972 Н -2.565870 -1.365798 -1.710013 N -1.606288 -1.927538 0.114843 N -2.966045 -1.103010 1.473587 C 0.149223 -2.435225 -0.373027 Н 0.485618 -1.497786 0.048656 C -3.457644 -0.708598 2.787581 Н -3.117592 -1.452370 3.504576 Н -3.051755 0.271799 3.036424 Н -4.544957 -0.679029 2.763741 F -0.170243 -2.586357 -1.640703 F 0.138394 -3.548615 0.323917 C -4.680017 0.003162 0.021629 C -4.797314 1.256195 0.629480 C -5.684889 -0.456221 -0.832029 C -5.924186 2.035902 0.394865 Н -3.995774 1.622650 1.261242 C -6.807782 0.331029 -1.066240 Н -5.587733 -1.429658 -1.300223 C -6.930080 1.574210 -0.450915 H -6.011940 3.008410 0.865264 Н -7.589138 -0.029089 -1.725338 Н -7.807027 2.185119 -0.632132 S -0.010708 1.424176 0.752423 O 0.867338 0.256312 0.921898

0	-1.404172	1.203154	1.139433
0	0.566378	2.698922	1.167667
С	-0.101978	1.572460	-1.094051
F	-0.411794	0.394697	-1.647469
F	-1.029232	2.457207	-1.459348
F	1.067098	1.965333	-1.600984
С	2.888069	-2.621123	0.456365
С	2.506675	-1.544924	-1.709226
С	4.021234	-1.479174	-1.900504
С	4.393157	-2.527765	0.206329
Н	1.998827	-1.687413	-2.664237
Н	2.553351	-1.743715	1.022309
Н	2.645113	-3.519634	1.025241
Н	4.365167	-2.408972	-2.362566
Н	4.296048	-0.667575	-2.571714
Н	4.728375	-3.412766	-0.342018
Н	4.930460	-2.509564	1.150719
Н	2.147148	-0.615583	-1.253060
N	2.127800	-2.646533	-0.805831
Н	2.267995	-3.542457	-1.275289
N	4.709315	-1.354109	-0.615450
С	4.718978	-0.095114	0.013163
С	4.304803	1.074711	-0.649409
С	5.197379	0.044252	1.330230
С	4.367191	2.315155	-0.020921
Η	3.914337	1.035080	-1.656805
С	5.250674	1.287543	1.946666
Η	5.546962	-0.817804	1.882196
С	4.835992	2.439140	1.281686
Η	4.030881	3.191727	-0.564562
Н	5.625522	1.351722	2.962560
Н	4.874041	3.405907	1.769123

(PZ-1)_{Post}

С	2.647188	2.063320	0.032746	
С	3.467591	1.113914	0.609891	
N	2.315661	2.185913	2.161234	
Н	2.512289	2.298508	-1.011099	
N	1.959355	2.687937	1.013564	
N	3.224314	1.244108	1.934287	
С	-0.871166	2.735020	0.028965	
Н	-0.441101	1.868611	0.528156	
С	3.779820	0.500384	3.053227	
Н	3.712449	1.135013	3.934475	
Η	3.207273	-0.414508	3.204499	
Η	4.822747	0.266747	2.845214	
F	-0.182603	3.067537	-1.071941	
F	-0.913004	3.805959	0.832777	
С	4.376755	0.137583	-0.003899	
С	4.407413	-1.193058	0.425104	
С	5.192016	0.537663	-1.068041	
С	5.256681	-2.104422	-0.193966	
Η	3.740549	-1.515786	1.215735	
С	6.033462	-0.379111	-1.687928	
Η	5.170063	1.570304	-1.398895	
С	6.071654	-1.700502	-1.248678	
Η	5.273676	-3.135013	0.141807	
Η	6.663377	-0.059832	-2.510381	
Н	6.732111	-2.413647	-1.728765	
S	0.131344	-1.277079	1.015397	
0	-0.893638	-0.221470	1.028142	
0	1.388277	-0.914349	1.667741	
0	-0.361054	-2.622505	1.297250	
С	0.583838	-1.351705	-0.780530	
F	0.886838	-0.137121	-1.243499	
F	1.634228	-2.147348	-0.978450	

F	-0.433198	-1.821768	-1.507357
С	-3.125201	2.102904	0.807598
С	-2.335706	1.373719	-1.442947
С	-3.800355	1.150640	-1.805953
С	-4.549793	1.831347	0.341422
Н	-1.757479	1.712824	-2.300169
Н	-2.669216	1.218878	1.257241
Η	-3.089523	2.946060	1.495145
Н	-4.216053	2.084308	-2.196064
Н	-3.867094	0.412933	-2.602399
Н	-4.965725	2.735503	-0.112125
Н	-5.152018	1.599771	1.215084
Н	-1.881684	0.488719	-0.994233
N	-2.270691	2.455395	-0.389082
Н	-2.640163	3.326883	-0.802760
N	-4.598652	0.762026	-0.652259
С	-4.529674	-0.574384	-0.202274
С	-3.832367	-1.566212	-0.910921
С	-5.221150	-0.962956	0.958659
С	-3.836554	-2.888566	-0.475069
Н	-3.271408	-1.326067	-1.803765
С	-5.208267	-2.283145	1.388487
Η	-5.794928	-0.239489	1.523042
С	-4.516749	-3.261879	0.677704
Н	-3.285410	-3.628696	-1.045394
Н	-5.755485	-2.547626	2.286756
Н	-4.509299	-4.290832	1.016477

$(PZ-2)_{Pre}$

С	-2.231338	-1.023482	1.589845
С	-1.121471	-0.992205	0.780554
N	-2.585933	-2.389668	-0.119039
Н	-2.479281	-0.486933	2.490563

N	-3.072653	-1.886567	0.982572
N	-1.406419	-1.861613	-0.231145
С	-4.446207	-2.232881	1.351364
Н	-5.123331	-2.040647	0.523989
С	-0.609578	-2.169510	-1.418404
Н	-0.865093	-3.180107	-1.728792
Н	-0.871805	-1.453021	-2.196982
Η	0.449315	-2.098304	-1.167594
F	-4.752796	-1.504790	2.424947
F	-4.466746	-3.529702	1.698459
С	0.068487	-0.139867	0.876764
С	0.502218	0.587566	-0.235098
С	0.695580	0.021078	2.114811
С	1.569115	1.469178	-0.103339
Н	-0.015887	0.015887 0.492730	
С	1.760621	0.906233	2.236980
Н	0.348522	-0.545987	2.971823
С	2.197151	1.629832	1.129850
Н	1.904473	2.039735	-0.962273
Η	2.251436	1.030393	3.195618
Н	3.029044	2.318969	1.225918
S	-3.851881	1.054146	-0.877128
0	-4.654917	0.363099	0.138722
0	-2.716139	0.277328	-1.382825
0	-4.611996	1.786418	-1.885567
С	-3.028162	2.403292	0.091761
F	-2.342112	1.910087	1.124776
F	-2.177798	3.083235	-0.678974
F	-3.929166	3.262863	0.569484
С	3.217136	-1.974345	0.076073
С	3.587362	-1.060451	-2.137979
С	5.094196	-1.111767	-1.877551
С	4.729066	-2.016526	0.310596

Η	3.380117	-1.231678	-3.196917
Η	2.827337	-1.029027	0.470486
Η	2.728344	-2.792051	0.612704
Η	5.468265	-2.098904	-2.169787
Η	5.638034	-0.374088	-2.466914
Η	5.130586	-2.971607	-0.043901
Η	4.957857	-1.939904	1.371282
Η	3.202318	-0.069661	-1.873878
N	5.392115	-0.950798	-0.452807
С	5.440295	0.337641	0.091011
С	5.339196	1.496837	-0.703821
С	5.661828	0.524029	1.471960
С	5.483004	2.764891	-0.146710
Η	5.140413	1.425978	-1.764468
С	5.794623	1.794577	2.014972
Η	5.760755	-0.330213	2.128387
С	5.711881	2.933329	1.214444
Η	5.401564	3.631072	-0.795071
Η	5.974464	1.891481	3.080578
Η	5.817068	3.922767	1.643445
Η	3.105931	-2.982312	-1.685347
N	2.856503	-2.055627	-1.343908

(PZ-2)_{TS}

С	-2.798496	-0.699217	1.882881
С	-1.551820	-0.332130	1.437428
N	-2.015455	-2.269199	0.523869
Н	-3.516261	-0.218583	2.528493
N	-3.024995	-1.894805	1.291552
N	-1.134825	-1.338975	0.613863
С	-4.199160	-2.725301	1.352900
Η	-4.158528	-3.480178	0.570855
С	0.450717	-1.577423	-0.354556

Η	0.340236	-2.652875	-0.333318
Η	0.064192	-1.012385	-1.190247
Н	1.049166	-1.092048	0.403306
F	-5.284901	-1.945818	1.229587
F	-4.269451	-3.303120	2.571119
С	-0.760188	0.867759	1.744362
С	-0.015976	1.507838	0.749016
С	-0.776218	1.386225	3.041330
С	0.718180	2.647622	1.058649
Н	-0.049641	1.133199	-0.267541
С	-0.046719	2.531429	3.342532
Н	-1.349363	0.884778	3.813878
С	0.705625	3.160471	2.353953
Н	1.290196	3.143862	0.282742
Η	-0.060560	2.926995	4.351514
Н	1.277043	4.050514	2.591923
S	-3.016153	0.391295	-1.991985
0	-3.688280	-0.564593	-1.110894
0	-1.551521	0.385804	-1.912901
0	-3.561852	0.488820	-3.344999
С	-3.465331	2.023922	-1.239840
F	-3.085077	2.089562	0.036695
F	-2.880747	3.029417	-1.895254
F	-4.785858	2.217988	-1.284975
С	3.191390	-2.460349	-0.520855
С	2.633228	-0.469383	-1.815727
С	4.038761	-0.509058	-2.415243
С	4.586759	-2.459903	-1.145152
Η	1.911013	-0.085770	-2.539903
Н	3.215831	-1.910159	0.427243
Н	2.857077	-3.480268	-0.319071
Н	4.026952	-1.147605	-3.303936
Н	4.364412	0.479464	-2.735567

Η	4.574379	-3.038853	-2.073247
Н	5.297399	-2.934010	-0.472784
Н	2.612309	0.179016	-0.932728
N	5.001701	-1.092401	-1.480395
С	5.514314	-0.283340	-0.452683
С	5.234522	1.092873	-0.367408
С	6.391823	-0.825047	0.508088
С	5.809529	1.881003	0.626154
Н	4.558804	1.566115	-1.066502
С	6.950079	-0.029708	1.499190
Η	6.664134	-1.871732	0.470884
С	6.666608	1.332968	1.573177
Η	5.568264	2.938260	0.657915
Η	7.625221	-0.483455	2.216917
Η	7.105277	1.949879	2.348183
Η	2.019052	-2.386984	-2.202342
Ν	2.199644	-1.805766	-1.384276

(PZ-2)_{Post}

С	3.679199	1.441424	-0.738638
С	2.315799	1.578372	-0.825102
N	2.876992	0.164464	-2.372084
Н	4.424278	1.856872	-0.079570
N	3.975883	0.557059	-1.717754
N	1.877377	0.776011	-1.843476
С	5.241836	0.003438	-2.083444
Η	5.100734	-0.887176	-2.690506
С	-1.064715	-0.836164	-2.146301
Н	-0.937897	-1.262471	-3.140348
Η	-0.149917	-0.925132	-1.563188
Н	-1.376209	0.205689	-2.217860
F	5.944305	-0.270515	-0.968618
F	5.961791	0.925642	-2.770095

С	1.396566	2.367211	0.004413
С	0.112961	1.878518	0.263759
С	1.798229	3.580316	0.567558
С	-0.761402	2.601183	1.066976
Н	-0.172216	0.914734	-0.140534
С	0.923048	4.297712	1.377441
Н	2.791789	3.965759	0.363290
С	-0.359051	3.812935	1.625743
Н	-1.754361	2.214037	1.268881
Н	1.240403	5.239793	1.809935
Н	-1.040494	4.375399	2.253823
S	2.140573	-1.930723	0.923114
0	3.295978	-1.601756	0.090397
0	0.843697	-1.485148	0.400334
0	2.139878	-3.277637	1.494405
С	2.378148	-0.853056	2.413334
F	2.432701	0.436866	2.084531
F	1.372873	-1.014074	3.278798
F	3.514219	-1.163026	3.043940
С	-3.429016	-1.548842	-2.217707
С	-2.339696	-1.097262	-0.044597
С	-3.451635	-1.905298	0.613070
С	-4.506583	-2.330714	-1.477439
Н	-1.387244	-1.212608	0.472787
Н	-3.696615	-0.493932	-2.313089
Н	-3.231886	-1.970065	-3.203481
Н	-3.160267	-2.960261	0.629137
Н	-3.577785	-1.594996	1.647937
Н	-4.207908	-3.379853	-1.395636
Н	-5.422725	-2.298613	-2.060261
Н	-2.594524	-0.038184	-0.127301
N	-4.706411	-1.811824	-0.124105
С	-5.506800	-0.664608	0.042669

С	-5.206512	0.327867	0.991264
С	-6.686690	-0.511829	-0.709354
С	-6.058272	1.413175	1.182193
Н	-4.308421	0.272697	1.591699
С	-7.521711	0.580045	-0.515921
Н	-6.973691	-1.262476	-1.434226
С	-7.219292	1.556026	0.431961
Н	-5.795964	2.157990	1.925923
Н	-8.425684	0.660691	-1.109905
Н	-7.874980	2.405336	0.582072
Н	-1.848519	-2.571750	-1.391885
N	-2.142896	-1.589083	-1.449710

9. Natural population analysis

(PZ-1)_{Pre}

		Natural				
Atom	No	Charge	Core	Valence	Rydberg	Total
С	1	0.02917	1.99907	3.95333	0.01843	5.97083
С	2	0.18862	1.99907	3.78947	0.02284	5.81138
Ν	3	0.01969	1.99948	4.95032	0.03051	6.98031
Н	4	0.29446	0.0000	0.70397	0.00157	0.70554
Ν	5	-0.20452	1.99932	5.17631	0.02888	7.20452
Ν	6	-0.10480	1.99928	5.08190	0.02362	7.10480
С	7	0.78972	1.99924	3.16638	0.04466	5.21028
Н	8	0.23810	0.00000	0.75919	0.00271	0.76190
С	9	-0.37696	1.99934	4.36464	0.01297	6.37696
Н	10	0.24854	0.0000	0.75039	0.00107	0.75146
Н	11	0.24536	0.00000	0.75343	0.00121	0.75464
Н	12	0.24472	0.00000	0.75426	0.00102	0.75528
F	13	-0.35058	1.99992	7.34118	0.00948	9.35058
F	14	-0.36160	1.99993	7.35512	0.00656	9.36160
С	15	-0.11849	1.99903	4.10334	0.01612	6.11849
C	16	-0.18820	1.99912	4.17333	0.01575	6.18820
C	17	-0.18186	1.99913	4.16689	0.01584	6.18186
C	18	-0.21269	1.99921	4.19573	0.01775	6.21269
н	19	0.24330	0.00000	0.75522	0.00148	0.75670
C	20	-0.21438	1.99921	4.19749	0.01768	6.21438
н	21	0.24093	0.00000	0.75790	0.00116	0.75907
C	22	-0.20090	1.99922	4.18410	0.01758	6.20090
Н	23	0.23620	0.00000	0.76268	0.00112	0.76380
Н	24	0.23591	0.00000	0.76297	0.00112	0.76409
Н	25	0.23398	0.00000	0.76499	0.00103	0.76602
S	26	2.28814	9.99895	3.46566	0.24725	13.71186

0	27	-1.01756	1.99981	6.99981	0.01794	9.01756
0	28	-1.01904	1.99981	7.00207	0.01716	9.01904
0	29	-0.98883	1.99981	6.97490	0.01412	8.98883
С	30	0.84391	1.99980	3.07775	0.07853	5.15609
F	31	-0.36203	1.99991	7.35111	0.01101	9.36203
F	32	-0.36143	1.99991	7.35182	0.00970	9.36143
F	33	-0.35932	1.99991	7.34815	0.01127	9.35932
С	34	-0.21798	1.99933	4.20076	0.01790	6.21798
С	35	-0.22046	1.99932	4.20241	0.01873	6.22046
С	36	-0.20221	1.99930	4.18415	0.01875	6.20221
С	37	-0.19406	1.99929	4.17697	0.01780	6.19406
Н	38	0.20883	0.00000	0.78986	0.00131	0.79117
Н	39	0.20531	0.00000	0.79273	0.00196	0.79469
Н	40	0.20883	0.00000	0.78988	0.00129	0.79117
Н	41	0.20649	0.00000	0.79170	0.00181	0.79351
Н	42	0.21768	0.00000	0.78084	0.00148	0.78232
Н	43	0.20382	0.00000	0.79428	0.00190	0.79618
Н	44	0.21794	0.00000	0.78056	0.00149	0.78206
Н	45	0.20798	0.00000	0.78972	0.00230	0.79202
Ν	46	-0.72199	1.99958	5.69860	0.02381	7.72199
Н	47	0.36750	0.00000	0.63009	0.00241	0.63250
Ν	48	-0.54349	1.99940	5.51857	0.02552	7.54349
С	49	0.18641	1.99903	3.78968	0.02488	5.81359
С	50	-0.29133	1.99913	4.27608	0.01612	6.29133
С	51	-0.27848	1.99914	4.26329	0.01606	6.27848
С	52	-0.20146	1.99922	4.18349	0.01874	6.20146
Н	53	0.22963	0.00000	0.76874	0.00163	0.77037
С	54	-0.20694	1.99922	4.18972	0.01799	6.20694
Н	55	0.22800	0.00000	0.77062	0.00138	0.77200
С	56	-0.28166	1.99920	4.26278	0.01968	6.28166
н	57	0.22429	0.00000	0.77446	0.00125	0.77571
Н	58	0.22471	0.0000	0.77417	0.00113	0.77529
Н	59	0.22509	0.00000	0.77373 S50	0.00117	0.77491

* Total * 0.00000 77.97865 191.04368 0.97766 270.00000

 $(PZ-1)_{TS}$

		Natural				
Atom	No	Charge	Core	Valence	Rydberg	Total
 С	1	-0.03128	1.99908	4.01225	0.01995	6.03128
С	2	0.16517	1.99906	3.81300	0.02277	5.83483
Ν	3	-0.05466	1.99950	5.02358	0.03159	7.05466
н	4	0.26453	0.0000	0.73407	0.00140	0.73547
Ν	5	-0.26550	1.99940	5.22606	0.04004	7.26550
Ν	6	-0.14688	1.99927	5.12244	0.02516	7.14688
C	7	0.81970	1.99924	3.12790	0.05316	5.18030
Н	8	0.25415	0.00000	0.74294	0.00291	0.74585
С	9	-0.37747	1.99935	4.36519	0.01292	6.37747
Н	10	0.23956	0.00000	0.75933	0.00112	0.76044
Н	11	0.23578	0.00000	0.76295	0.00127	0.76422
Н	12	0.23572	0.00000	0.76320	0.00108	0.76428
F	13	-0.34537	1.99990	7.33621	0.00927	9.34537
F	14	-0.34050	1.99989	7.33221	0.00840	9.34050
C	15	-0.10709	1.99904	4.09196	0.01609	6.10709
С	16	-0.19515	1.99912	4.17998	0.01604	6.19515
С	17	-0.18927	1.99913	4.17421	0.01593	6.18927
С	18	-0.21514	1.99921	4.19811	0.01781	6.21514
Н	19	0.24213	0.00000	0.75638	0.00149	0.75787
C	20	-0.21681	1.99921	4.19985	0.01775	6.21681
Н	21	0.23767	0.00000	0.76112	0.00121	0.76233
С	22	-0.20960	1.99922	4.19265	0.01774	6.20960
Н	23	0.23387	0.00000	0.76500	0.00113	0.76613
Н	24	0.23361	0.00000	0.76526	0.00113	0.76639

Η	25	0.23211	0.00000	0.76684	0.00105	0.76789
S	26	2.28654	9.99894	3.46470	0.24983	13.71346
0	27	-1.02273	1.99980	7.00550	0.01743	9.02273
0	28	-1.00497	1.99981	6.98778	0.01739	9.00497
0	29	-0.98589	1.99981	6.97488	0.01120	8.98589
С	30	0.84442	1.99980	3.07795	0.07783	5.15558
F	31	-0.36540	1.99991	7.35329	0.01220	9.36540
F	32	-0.35805	1.99991	7.34862	0.00952	9.35805
F	33	-0.35807	1.99991	7.34841	0.00974	9.35807
С	34	-0.21872	1.99931	4.20308	0.01634	6.21872
С	35	-0.22284	1.99930	4.20707	0.01646	6.22284
С	36	-0.19872	1.99930	4.18042	0.01900	6.19872
С	37	-0.19220	1.99928	4.17468	0.01824	6.19220
н	38	0.22973	0.00000	0.76894	0.00133	0.77027
Н	39	0.21874	0.00000	0.77962	0.00164	0.78126
Н	40	0.22901	0.00000	0.76970	0.00129	0.77099
Н	41	0.21719	0.00000	0.78140	0.00142	0.78281
Н	42	0.22710	0.00000	0.77164	0.00126	0.77290
н	43	0.21436	0.00000	0.78419	0.00145	0.78564
Н	44	0.22674	0.00000	0.77200	0.00125	0.77326
Н	45	0.21440	0.00000	0.78270	0.00290	0.78560
Ν	46	-0.62952	1.99954	5.60457	0.02541	7.62952
Н	47	0.40922	0.00000	0.58935	0.00143	0.59078
Ν	48	-0.54035	1.99941	5.51710	0.02385	7.54035
С	49	0.18271	1.99903	3.79479	0.02347	5.81729
С	50	-0.28603	1.99913	4.27139	0.01552	6.28603
С	51	-0.27500	1.99913	4.26019	0.01568	6.27500
С	52	-0.20252	1.99922	4.18457	0.01873	6.20252
Н	53	0.23049	0.00000	0.76803	0.00148	0.76951
С	54	-0.20425	1.99922	4.18733	0.01770	6.20425
Н	55	0.22983	0.00000	0.76884	0.00132	0.77017
С	56	-0.27395	1.99920	4.25545	0.01930	6.27395
Н	57	0.22636	0.00000	0.77244 S52	0.00119	0.77364

	Н	58	0.22622	0.00000	0.77267	0.00111	0.77378
	Н	59	0.22687	0.00000	0.77198	0.00114	0.77313
====	=====	======					
*	Tota	1 *	0.00000	77.97858	191.02796	0.99345	270.00000

 $(PZ-2)_{Pre}$

			Natural				
	Atom	No	Charge	Core	Valence	Rydberg	Total
-	C	1	0.03222	1.99906	3.94993	0.01879	5.96778
	С	2	0.18447	1.99905	3.78956	0.02691	5.81553
	Ν	3	0.00653	1.99948	4.96480	0.02919	6.99347
	Н	4	0.29604	0.00000	0.70234	0.00163	0.70396
	Ν	5	-0.20206	1.99931	5.17440	0.02834	7.20206
	Ν	6	-0.10177	1.99928	5.07806	0.02442	7.10177
	С	7	0.80229	1.99932	3.15400	0.04439	5.19771
	Н	8	0.22208	0.00000	0.77630	0.00162	0.77792
	С	9	-0.39378	1.99932	4.38053	0.01393	6.39378
	Н	10	0.24587	0.00000	0.75306	0.00107	0.75413
	Н	11	0.24394	0.00000	0.75499	0.00107	0.75606
	Н	12	0.26009	0.00000	0.73796	0.00196	0.73991
	F	13	-0.34522	1.99992	7.33804	0.00725	9.34522
	F	14	-0.35422	1.99993	7.34882	0.00547	9.35422
	С	15	-0.12103	1.99902	4.09948	0.02254	6.12103
	С	16	-0.19578	1.99911	4.17340	0.02327	6.19578
	С	17	-0.18280	1.99913	4.16849	0.01518	6.18280
	C	18	-0.21362	1.99919	4.19753	0.01689	6.21362
	Н	19	0.24283	0.00000	0.75521	0.00195	0.75717
	C	20	-0.21445	1.99920	4.19843	0.01683	6.21445
	Н	21	0.24068	0.00000	0.75815	0.00116	0.75932
	С	22	-0.20294	1.99920	4.18596	0.01778	6.20294

Η	23	0.23723	0.00000	0.76162	0.00115	0.76277
Н	24	0.23606	0.00000	0.76278	0.00116	0.76394
Н	25	0.23675	0.00000	0.76081	0.00243	0.76325
S	26	2.28094	9.99896	3.46903	0.25107	13.71906
0	27	-1.01901	1.99981	7.00221	0.01699	9.01901
0	28	-1.01692	1.99981	6.99998	0.01713	9.01692
0	29	-0.98828	1.99981	6.97757	0.01090	8.98828
С	30	0.84678	1.99980	3.07545	0.07797	5.15322
F	31	-0.36073	1.99991	7.34998	0.01083	9.36073
F	32	-0.35939	1.99991	7.34999	0.00949	9.35939
F	33	-0.36003	1.99991	7.35084	0.00928	9.36003
С	34	-0.21850	1.99931	4.20199	0.01720	6.21850
С	35	-0.21286	1.99932	4.19642	0.01712	6.21286
С	36	-0.20180	1.99930	4.18444	0.01807	6.20180
С	37	-0.19239	1.99929	4.17605	0.01706	6.19239
Н	38	0.21048	0.00000	0.78831	0.00121	0.78952
Н	39	0.20025	0.00000	0.79634	0.00342	0.79975
Н	40	0.20982	0.00000	0.78895	0.00123	0.79018
Н	41	0.20823	0.00000	0.79028	0.00149	0.79177
Н	42	0.21868	0.00000	0.77983	0.00149	0.78132
Н	43	0.20553	0.00000	0.79288	0.00158	0.79447
Н	44	0.21831	0.00000	0.78027	0.00141	0.78169
Н	45	0.19974	0.00000	0.79850	0.00176	0.80026
Ν	46	-0.54296	1.99940	5.51782	0.02574	7.54296
С	47	0.18815	1.99903	3.78725	0.02557	5.81185
С	48	-0.29217	1.99913	4.27747	0.01557	6.29217
С	49	-0.27682	1.99913	4.26185	0.01584	6.27682
С	50	-0.20475	1.99922	4.18758	0.01796	6.20475
Н	51	0.23131	0.00000	0.76730	0.00139	0.76869
С	52	-0.20706	1.99922	4.18987	0.01798	6.20706
Н	53	0.22961	0.00000	0.76911	0.00128	0.77039
С	54	-0.28301	1.99920	4.26457	0.01925	6.28301
Н	55	0.22642	0.00000	0.77246 S54	0.00111	0.77358

	Н	56	0.22634	0.00000	0.77255	0.00111	0.77366
	н	57	0.22711	0.00000	0.77173	0.00115	0.77289
	Н	58	0.36808	0.00000	0.62975	0.00217	0.63192
	Ν	59	-0.71849	1.99957	5.69320	0.02571	7.71849
====		=====					
*	Tota	1 *	0.00000	77.97858	191.03649	0.98493	270.00000

 $(PZ-2)_{TS}$

		Natural -				
Atom	No	Charge	Core	Valence	Rydberg	Total
C	1	0.01810	1.99907	3.96531	0.01751	5.98190
С	2	0.12600	1.99907	3.84725	0.02768	5.87400
Ν	3	-0.01998	1.99950	4.98969	0.03079	7.01998
Н	4	0.28244	0.00000	0.71608	0.00148	0.71756
Ν	5	-0.23205	1.99932	5.20692	0.02582	7.23205
Ν	6	-0.18272	1.99935	5.14577	0.03760	7.18272
С	7	0.79045	1.99928	3.16699	0.04328	5.20955
Н	8	0.21328	0.00000	0.78517	0.00156	0.78672
С	9	-0.29165	1.99947	4.27947	0.01271	6.29165
Н	10	0.22603	0.00000	0.77261	0.00136	0.77397
Н	11	0.24304	0.00000	0.75530	0.00166	0.75696
н	12	0.22291	0.00000	0.77574	0.00135	0.77709
F	13	-0.35479	1.99993	7.34798	0.00688	9.35479
F	14	-0.36341	1.99993	7.35822	0.00526	9.36341
С	15	-0.10157	1.99903	4.08297	0.01958	6.10157
С	16	-0.20136	1.99912	4.18597	0.01627	6.20136
С	17	-0.19248	1.99914	4.17838	0.01496	6.19248
С	18	-0.21608	1.99921	4.19936	0.01752	6.21608
Н	19	0.24645	0.00000	0.75108	0.00247	0.75355
С	20	-0.21653	1.99921	4.20009	0.01723	6.21653

Н	21	0.23603	0.00000	0.76279	0.00118	0.76397
С	22	-0.21104	1.99921	4.19431	0.01751	6.21104
Н	23	0.23229	0.00000	0.76656	0.00115	0.76771
Н	24	0.23311	0.00000	0.76582	0.00106	0.76689
Н	25	0.23148	0.00000	0.76744	0.00108	0.76852
S	26	2.28314	9.99896	3.46679	0.25111	13.71686
0	27	-1.00894	1.99981	6.99166	0.01747	9.00894
0	28	-1.01596	1.99980	6.99868	0.01747	9.01596
0	29	-0.99600	1.99982	6.98531	0.01087	8.99600
С	30	0.84467	1.99980	3.07754	0.07799	5.15533
F	31	-0.35998	1.99991	7.34873	0.01134	9.35998
F	32	-0.36266	1.99991	7.35310	0.00964	9.36266
F	33	-0.36317	1.99991	7.35356	0.00969	9.36317
С	34	-0.20532	1.99931	4.19030	0.01570	6.20532
С	35	-0.21083	1.99931	4.19540	0.01612	6.21083
С	36	-0.20015	1.99930	4.18207	0.01878	6.20015
С	37	-0.19211	1.99929	4.17506	0.01776	6.19211
Н	38	0.22563	0.00000	0.77292	0.00145	0.77437
Н	39	0.20880	0.00000	0.78969	0.00151	0.79120
Н	40	0.22447	0.00000	0.77426	0.00127	0.77553
Н	41	0.21516	0.00000	0.78329	0.00155	0.78484
Н	42	0.22548	0.00000	0.77319	0.00134	0.77452
Н	43	0.21176	0.00000	0.78663	0.00161	0.78824
Н	44	0.22476	0.00000	0.77388	0.00136	0.77524
Н	45	0.20839	0.00000	0.78898	0.00262	0.79161
Ν	46	-0.54063	1.99940	5.51801	0.02322	7.54063
С	47	0.18644	1.99903	3.79411	0.02042	5.81356
С	48	-0.28957	1.99913	4.27470	0.01574	6.28957
С	49	-0.27408	1.99913	4.25854	0.01640	6.27408
С	50	-0.20365	1.99922	4.18627	0.01815	6.20365
Н	51	0.23123	0.00000	0.76736	0.00141	0.76877
С	52	-0.20614	1.99922	4.18904	0.01788	6.20614
Н	53	0.23017	0.00000	0.76850 S56	0.00133	0.76983

C	54	-0.27594	1.99920	4.25743	0.01931	6.27594
Н	55	0.22642	0.00000	0.77248	0.00110	0.77358
Н	56	0.22656	0.00000	0.77236	0.00108	0.77344
Н	57	0.22681	0.00000	0.77205	0.00114	0.77319
Н	58	0.39730	0.00000	0.59942	0.00329	0.60270
Ν	59	-0.61002	1.99954	5.58831	0.02217	7.61002
* Tot	tal *	0.00000	77.97887	191.04690	0.97423	270.00000