Enhanced reduction of bromate by highly reactive and

dispersive green nano-zerovalent iron (G-NZVI)

synthesized with onion peel extract

Olga Lem^a, Sunho Yoon^b, Sungjun Bae^b, Woojin Lee^{*a}

^aDepartment of Civil and Environmental Engineering, National Laboratory Astana, Nazarbayev University, Nur-sultan 010000, Republic of Kazakhstan

^bDepartment of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea

*Corresponding author: phone: +7-7172-70-6540

E-mail: woojin.lee@nu.edu.kz

Figure S1. Experimental set up of mobility test

Figure S2. SEM-EDS images of NZVI ((a) and (b)) and G-NZVI ((c) and (d)).

Figure S3. TGA profiles of NZVI, onion peel extract, and G-NZVI.

Figure S4. Effect of G-NZVI loading on the removal efficiency of BrO₃⁻ (50 mg/L) (a), the k₁ values obtained from each suspension (b), and corresponding Br⁻ formation (c).

Figure S5. Effect of BrO_3^- concentration on the removal efficiency of BrO_3^- by G-NZVI (a), the k₁ values obtained from each suspension (b), and corresponding Br⁻ formation (c).

Figure S6. Effect of pH on the removal efficiency of BrO_3 - by G-NZVI (a) and the k_1 values obtained from each suspension (b).

Figure S7. Zeta potential of G-NZVI as a function of pH.

						_
	Polyphenols	BrO ₃ -/Br-	Fe^{3+}/Fe^{2+}	Fe ³⁺ /Fe ⁰	Fe ²⁺ /Fe ⁰	S1 .
	(0.3-0.8)	(1.478)	(0.771)	(-0.037)	(-0.44)	
						Theor
Polyphenols		ΔG>0,	$\Delta G < 0,$	$\Delta G < 0,$	$\Delta G < 0,$	
(0.3-0.8)*		NS**	S***	S	S	eticall
BrO ₃ -/Br-	$\Delta G > 0,$		$\Delta G > 0,$	$\Delta G \leq 0,$	$\Delta G < 0,$	у
(1.478)	NS		NS	S	S	
						calcul
Fe^{3+}/Fe^{2+}	$\Delta G < 0,$	ΔG>0,				
(0.771)	S	NS				ated
Fe ³⁺ /Fe ⁰	$\Delta G < 0,$	ΔG<0,				Gibbs
(-0.037)	S	S				
						free
Fe ²⁺ /Fe ⁰	$\Delta G < 0,$	ΔG<0,				
(-0.44)	S	S				energ

y values and spontaneity of reactions

*Potential energy (V)

**NS: non-spontaneous reaction

***S: spontaneous reaction

Table S2. Comparison of kinetic rate constants of pseudo-first-order and second-order reactions

Table

	Pseudo-f	irst-order	Second-order		
G-NZVI loading	Rate constant (k_1)	D 2	Rate constant (k ₂)	D 2	
mg/L	min ⁻¹	Κ	M/min	IV.	
50	0.006	0.43	0.0071	0.42	
100	0.0318	0.81	0.0456	0.86	
200	4.42	0.98	28.301	0.90	
300	4.5	0.96	8.7516	0.85	
BrO ₃ ⁻ loading	Rate constant (k_1)	D 2	Rate constant (k ₂)	D 2	
mg/L	min ⁻¹	К	M/min	IX ⁻	
50	4.42	0.98	27.005	0.90	
75	0.088	0.78	0.057	0.94	
100	0.022	0.81	0.033	0.87	
200	0.006	0.85	0.008	0.68	