Supporting Information

Hierarchical Self-Assembly of Discrete bis-[2]pseudorotaxanes Metallacycles with bispillar[5]arene via host-guest Interactions and Their Redox-Responsive Behavior

Gui-Yuan Wu,*a Chao Liang,a Yi-Xiong Hu,b Xu-Qing Wang,b Guang-Qiang Yin,b Zhou Lu*a

- a. Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China.
- b. Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China

Table of Contents

1.	Materials and methods	S2
2.	Synthetic experimental details and characterizations of new compounds	S3
3.	The construction and characterization of cross-linked supramolecular polymers	S8
4.	Stimuli-responsive supramolecular polymer	.S10
5.	Multiple nuclear NMR (¹ H and ¹³ C NMR) spectra and MS of	new
	compounds	.S14

1. Materials and methods

All solvents were dried according to standard procedures and all of them were degassed under N2 for 30 minutes before use. All air-sensitive reactions were carried out under inert N₂ atmosphere. ¹H, ¹³C NMR and ³¹P NMR spectra were recorded on Bruker 400MHz Spectrometer (¹H: 400 MHz; ³¹P: 161.9 MHz) and 500MHz Spectrometer (¹H: 500MHz) at 298 K. The ¹H and ¹³C NMR chemical shifts are reported relative to the residual solvent signals, and ³¹P NMR resonances are referenced to an internal standard sample of 85% H₃PO₄ (δ 0.0). 2D DOSY were recorded on Bruker 500 MHz Spectrometer (¹H: 500MHz) at 298 K. UV-vis spectra were recorded in a quartz cell (light path 10 mm or 2 mm) on a Cary 50Bio UV-visible spectrophotometer. The SEM samples were prepared on clean Si substrates. To minimize sample charging, a thin layer of Au was deposited onto the samples before SEM examination. All the SEM images were obtained using a S-4800 (Hitachi Ltd.) with an accelerating voltage of 3.0-10.0 kV. The TEM samples were deposited on copper grids, followed by a slow evaporation in air at room temperature. All the TEM measurements were performed under a Tecnai G2 20 TWIN device.

2. Synthetic experimental details and characterizations of new compounds

Scheme S1. The synthetic procedure for the macrocycle 1.

Synthesis of macrocycle 1. A 50 mL Schlenk flask was charged with macrocycle S1 (300 mg, 0.423mmol),¹ Cs₂CO₃(163.6 mg, 0.846mmol), S2 (150.7 mg, 0.508mmol), degassed, and back-filled three times with N₂. Anhydrous DMF (20mL) were introduced into the reaction flask by syringe. The reaction was stirred under an inert atmosphere at 90°C for a night. The solvent was taken up in CH₂Cl₂/H₂O mixture (100/50 mL). The organic phase was washed with H₂O (3×100 mL). The organic phases were collected and dried over MgSO₄, and the solution was evaporated in vaccuo. After column chromatography on SiO₂ (CH₂Cl₂-CH₃OH 0% to 2%), macrocycle 1 was obtained in 70% yield (273.8 mg). ¹H NMR (400 MHz, *d*₆-acetone) δ 8.66 (dd, 4H), 8.53 (d, 4H), 8.37 (d, 2H), 8.24 (d, 2H), 7.82 (s, 2H), 7.47 (dd, 4H), 7.20-7.08 (m, 5H), 6.91 (d, 2H), 6.63 (dd, 3H), 5.03 (s, 2H), 4.39-4.32 (m, 4H), 4.27-4.19 (m, 4H), 3.96 (dt, 8H). ¹³C NMR (100 MHz, *d*₆-acetone) δ 161.28 (d), 159.30 (s), 156.29 (s), 150.91 (s), 146.87 (s), 140.09 (s), 137.54 (s), 133.28 (s), 131.28 (s), 129.62 (s), 128.40 (s), 128.02 (s), 126.50 (s), 126.19 (s), 124.02 (s), 119.59 (s), 116.38 (s), 106.60 (s), 101.44 (s), 92.87 (s), 87.73 (s), 70.66-70.17 (m), 68.92 (s), 68.57 (s).

Scheme S2. Synthesis route of the phen derivative 2.

Synthesis of phen derivative 2. A 50 mL Schlenk flask was charged with S3 (300 mg, 0.824mmol),² Cs₂CO₃ (636.26mg, 3.3mmol), degassed, and back-filled three times with N₂. Anhydrous DMF (20mL) and 7-Bromoheptanenitrile (0.3 mL, 1.98mmol) were introduced into the reaction flask by syringe. The reaction was stirred under an inert atmosphere at 80°C for 48h. The solvent was taken up in CH₂Cl₂/H₂O mixture (100/50 mL). The organic phase was washed with H₂O (3×100 mL). The organic phases were collected and dried over MgSO₄, and the solution was evaporated in vaccuo. After column chromatography on SiO₂ (CH₂Cl₂-CH₃OH 0% to 1%), phen derivative **2** was obtained in 90% yield (432.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, 4H), 8.29 (d, 2H), 8.10 (d, 2H), 7.76 (s, 2H), 7.10 (d, 4H), 4.09 (t, 4H), 2.39 (t, 4H), 1.85 (s, 6H), 1.73 (s, 4H), 1.58 (d, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 160.48 (s), 156.28 (s), 145.45 (s), 137.12 (s), 131.72 (s), 129.08 (s), 127.57 (s), 125.68 (s), 119.79 (s), 119.57 (s), 114.78 (s), 67.72(s), 29.01 (s), 28.48 (s), 25.39 (d), 17.15 (s). HRMS (ESI): Exact mass calcd. For C₃₈H₃₈N₄O₂: 582.75, Found: 583.3.

Scheme S3. The synthetic procedure for the pesudorotaxane-containing donor building blocks 4.

Synthesis of phen derivative D.² In a Schlenk flask, 1 equiv of macrocycle 1 (100mg, 0.108mmol) was dissolved under argon in a 1:1 mixture of dichloromethane and acetonitrile. After addition of 1 equiv of Cu(MeCN)₄PF₆ (40.4mg, 0.108mmol), the reaction was stirred at room temperature under argon for 15 min. In a second Schlenk flask, 1 equiv of 2 (63.1mg, 0.108mmol) was dissolved in dichloromethane and cannula filtered into the first solution. The solution was stirred under argon at room temperature for an additional 30 min, followed by removal of the solvent in vacuo. Final purification was achieved by precipitation with dichloromethane/pentane and silica gel column chromatography using dichloromethane/methanol (96:4) to yield a dark red, crystalline solid **D** in quantitative yield. ¹H NMR (400 MHz, d_6 -acetone) δ 8.74-8.51 (m, 7H), 8.19 (d, 4H), 8.00 (d, 2H), 7.91 (d, 2H), 7.57 (d, 4H), 7.52-7.38 (m, 8H), 7.37-7.31 (m, 3H), 6.92 (s, 3H), 6.11 (dd, 8H), 5.27 (s, 2H), 4.45-4.36 (m, 4H), 3.99-3.93 (m, 4H), 3.66 (dd, 12H), 2.53 (t, 4H), 1.78-1.62 (m, 8H), 1.53 (ddd, 8H). ¹³C NMR (100 MHz, d_6 -acetone) δ 161.23 (s), 160.45 (s), 160.07 (s), 159.62 (s), 157.35 (s), 156.77 (s), 150.85 (s), 144.23 (d), 140.43 (s), 138.18 (s), 137.97 (s), 132.86 (s), 131.89 (s), 131.05 (s), 130.19 (d), 128.87 (s), 128.43 (s), 127.39 (s), 126.94 (s), 124.92 (d), 124.56 (s), 120.80 (s), 119.94 (s), 113.70 (s), 106.41 (s), 103.16 (s), 92.75 (s), 88.10 (s), 70.78 (s), 70.40 (s), 69.81 (s), 68.49 (s), 68.21 (s), 68.11 (d), 26.04 (d), 17.13 (s). MALDI-TOF-MS of **D**: m/z calcd for [C₉₇H₈₄N₈O₉Cu]⁺ ([M-PF₆⁻ 1⁺): 1569.33, Found: 1568.5.

Scheme S4. The synthetic procedure for the supramolecular [2+2] rhomboidal metallacycle R.

Synthesis of metallacycle R. Self-assembly of supramolecular [2+2] rhomboidal metallacycle R from ligand **D** and diplatinum acceptor **A**. The dipyridyl donor ligand **D** (15 mg, 8.75 µmol) and 60° organoplatinum acceptor A (10.18 mg, 8.75μ mol) were weighed accurately into a glass vial. To the vial was added 2.5 mL acetone and 0.4 mL H₂O, and the reaction solution was stirred at room temperature for 8 hours. The PF_6^- salt of **R** was synthesized by dissolving the NO_3^- salt of **R** in acetone/H₂O and adding a saturated aqueous solution of KPF₆ to precipitate the product, which was collected by vacuum filtration. ¹H NMR (500 MHz, d_6 -acetone) δ 8.99 (dd, J = 24.0, 5.7 Hz, 4H), 8.64 (s, 2H), 8.56 (dd, J = 23.2, 8.4 Hz, 4H), 8.08 (d, J = 6.8 Hz, 4H), 7.90-7.82 (m, 6H), 7.79 (dd, J = 5.6, 1.5 Hz, 2H), 7.62 (dd, J = 7.2, 4.7 Hz, 3H), 7.58-7.50 (m, 4H), 7.47 (d, J = 8.6 Hz, 4H), 7.41 (d, J =1.2 Hz, 2H), 7.31 (d, J = 8.6 Hz, 4H), 6.81 (dd, J = 12.2, 2.0 Hz, 3H), 6.01 (dd, J = 28.4, 8.7 Hz, 8H), 5.18 (s, 2H), 4.32-4.25 (m, 4H), 3.89-3.83 (m, 4H), 3.66-3.47 (m, 13H), 2.39 (t, J = 7.0 Hz, 4H), 1.57 (tt, J = 13.5, 6.6 Hz, 9H), 1.45-1.27 (m, 24H), 1.16-1.02 (m, 36H). ¹³C NMR (101 MHz, d_6 -acetone) δ 161.16, 160.41, 160.05, 159.85, 157.37, 156.80, 153.41, 144.27, 144.20,140.22, 138.21, 137.93, 134.52, 132.87, 131.92, 130.57, 130.20, 130.08, 129.80, 129.34, 128.89, 128.85, 128.40, 127.39, 126.88, 126.07, 124.99, 124.85, 123.98, 120.91, 120.68, 113.71, 113.68, 106.25, 103.08, 96.97, 87.12, 70.90, 70.32, 69.78, 68.45, 68.15, 67.99, 26.01, 25.90, 17.04, 13.27, 13.13, 13.00, 7.91. ³¹P NMR (acetone- d_6 , 161.9MHz): δ 14.48 ppm. ESI-MS: m/z: 1882.27 [M-3PF₆]³⁺, 1376.56 [M-4PF₆]⁴⁺, $1072.33 \, [M-5PF_6]^{5+}$.

Reference:

[1] M. C. Jimenez-Molero, C. Dietrich-Buchecker, J.-P. Sauvage. Chem. Eur. J. 2002, 8, 1456-1466.

[2] C. O. Dietrich-Buchecker, J.-P. Sauvage. Tetrahedron Letters, 1983, 24, 5095-5098.

3. The construction and characterization of cross-linked supramolecular polymers

Figure S1. ¹H NMR spectra of [2]pesudorotaxane **D** and metallacycle **R** (500 MHz, 296K) in acetone d_{6} .

Figure S2. ¹H NMR spectra of [2]pesudorotaxane D and metallacycle R (500 MHz, 296K) in acetone-

 d_6 .

Figure S3. ¹H NMR spectra (500 MHz, acetone-d₆, 296 K) of (a) 6.25 mM **bisP5**, (b) 6.25 mM **D** + 6.25 mM **bisP5**, and (c) 6.25 mM **D**.

(a) 0.1 mM, (b) 0.2 mM, (c) 0.3 mM, (d) 0.5 mM, (e) 1.0 mM, (f) 1.5 mM, (g) 2.0 mM, (h) 2.5 mM, (i) 3.0 mM.

Figure S5. 2-D DOSY (500 MHz, 296 K) plot of solutions in acetone- d_6 of the $\mathbf{R} \supset (\mathbf{bisP5})_2$ and $\mathbf{M} \supset (\mathbf{bisP5})_2$ ([Cu(phenanthroline)₂]⁺ unit = 6 mM).

5

Figure S6. Concentration-dependent SEM images of rhomboidal metallacycles **R**: (a) ca. 1.0 mM; (b) 2.0 mM; (c) ca. 3.0 mM; (d) ca. 4.0 mM.

5 Figure S7. Concentration-dependent SEM images of supramolecular polymers $\mathbf{R} \supset (\mathbf{bisPD})_2$: (a) ca.

1.0 mM; (b) 2.0 mM; (c) ca. 3.0 mM; (d) ca. 4.0 mM.

4. Stimuli-responsive supramolecular polymers

Figure S8. ¹H NMR spectra (500 MHz, acetone-*d*₆, 296 K) of (a) R⊃(bisP5)₂ (3 mM), (b) R⊃(bisP5)₂
+ 4.0 equiv NOBF₄, (c) R⊃(bisP5)₂ + 4.0 equiv NOBF₄ +8.0 equiv ASA.

5 Figure S9. SEM images of supramolecular polymers in acetone (a) $0.1 \text{mM} \mathbb{R} \supseteq (\text{bisP5})_2$, (b) $0.1 \text{mM} \mathbb{R} \supseteq (\text{bisP5})_2 + 4.0$ equiv NOBF₄, (c) $0.1 \text{mM} \mathbb{R} \supseteq (\text{bisP5})_2 + 4.0$ equiv NOBF₄ + 8.0 equiv ASA.

Figure S10. 2-D DOSY (500 MHz, 296 K) plot of solutions in acetone- d_6 of a 4.5mM solution of the 5 R \supset (bisP5)₂ (a) and of its oxidized form Cu(II)N4 (b), and R \supset (bisP5)₂ + 4.0 equiv NOBF₄+8.0 equiv ASA (c).

Table S1 Diffusion coefficient (*D*) values of the redox-responsive supramolecular polymers $M \supset (bisP5)_3$ and $R \supset (bisP5)_2$.

	Original state Cu(I)N4	Oxidation state Cu(II)N4	Reduction state Cu(I)N4
M⊃(bisP5) ₃	$0.3 \times 10^{-9} \text{ m}^2 \text{s}^{-1}$	$1.55 \times 10^{-9} \text{ m}^2 \text{s}^{-1}$	$0.28 \times 10^{-9} \text{ m}^2 \text{s}^{-1}$
$\mathbf{R} \supset (\mathbf{bisP5})_2$	$0.52 \times 10^{-9} \text{ m}^2 \text{s}^{-1}$	$1.32 \times 10^{-9} \text{ m}^2 \text{s}^{-1}$	$0.62 \times 10^{-9} \text{ m}^2 \text{s}^{-1}$

5. Multiple nuclear NMR (¹H and ¹³C NMR) spectra and MS of new compounds.

Figure S11. (a) ¹H NMR and (b) ¹³C NMR spectra of macrocycle 1 in CD₃COCD₃.

Figure S12. (a) ¹H NMR and (b) ¹³C NMR spectra of the phenanthroline derivative 2 in CD₃COCD₃.

5

Figure S13. ESI-TOF-MS of 2: Exact mass calcd. For C₃₈H₃₈N₄O₂: 582.30, Found: 583.3.

Figure S14. (a) ¹H NMR and (b) ¹³C NMR spectra of **D** in CD₃COCD₃.

5 Figure S15. ESI-TOF-MS of D: m/z calcd for [C₉₇H₈₄N₈O₉Cu]⁺ ([M-PF₆]⁺): 1569.33, Found: 1568.5.

Figure S16. (a) ¹H and ³¹P NMR spectra of the rhomboidal metallacycle **R** in CD₃COCD₃.

Figure S17. (a) ¹H-¹H COSY and (b) 2D NOESY NMR spectra of 3.0 mM rhomboidal metallacycle **R** in acetone- d_6 (500 MHz, 296 K).