One-step preparation of eggplant-derived hierarchical porous graphitic biochar as efficient oxygen reduction catalyst in microbial fuel cells

Zhengtai Zha^{a,b}, Zhi Zhang^{a,b,*}, Ping Xiang^{a,b}, Hongyi Zhu^{a,b}, Bangmei Zhou^{a,b}, Zhulong Sun^{a,b}, Shun Zhou^{a,b}

^a College of Environment and Ecology, Chongqing University, Chongqing, 400045, China

^b Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education,

Chongqing University, Chongqing, 400045, China

^{*}Corresponding author. E-mail address: zhangzhicqu@cqu.edu.cn (Z. Zhang).

Text S1. Conversion of potential between Ag/AgCl electrode and reversible hydrogen electrode (RHE)

All the electrochemical measurements were performed with a three-electrode system in 50 mM PBS solution. The reference electrode Ag/AgCl was filled with 4 M KCl gel solution. The potentials could be converted to vs. a reversible hydrogen electrode (RHE) which is calculated from Eq. (S1).

$$E_{RHE} = E_{vs. Ag/AgCl} + 0.0591 * pH + 0.199$$
(S1)

Where E_{RHE} would be the measured potential vs. a reversible hydrogen electrode, $E_{vs.}$ _{Ag/AgCl} is the experimentally tested potential vs. Ag/AgCl reference electrode. 0.199 V is the formal potential of an Ag/AgCl electrode with 4 M KCl filling solution at 25 °C vs. NHE according to the Phychemi Co., Ltd.

Test. S2 Electrode preparation method

The anode material is carbon felt $(2 \times 2 \text{ cm})$, soaked in acetone overnight, then thoroughly washed with deionized water, and dried in an oven at 60°C for using. Cathode material was carbon cloth (project area: 7 cm²) including a gas diffusion layer, carbon-based layer, and catalyst layer (0.5 mg/cm²). The gas diffusion layer was fabricated by coating polytetrafluoroethylene (PTFE) solution (60 wt%, Hesen, Shanghai, China) on the carbon-based layer and annealing at 370 °C for 15 min in a muffle furnace; this process was repeated four times. The catalyst ink was prepared by sonicating a mixture comprising the catalyst (3.5 mg), nafion solution (25 µL), isopropanol (15 μ L), and deionized water (5 μ L) for 20 min. The uniform catalyst ink was brushed on the carbon cloth and dried at 28 °C for 24h. In addition, Pt/C cathode (20 wt%, 0.5 mg/cm²) was fabricated by the same operation process as a reference to probe the performance of the EPGC catalysts.

Phosphate buffer solution (g / L)		Trace metal solution (mg / L)		Vitamin solution (mg / L)		
Component	Concentration	Component	Concentration	Component	Concentration	
NH ₄ Cl	0.31	Nitrilotriacetic acid	1.5	Biotin	2.0	
KCl	0.13	MgSO ₄ ·7H ₂ O	3.0	folic acid	2.0	
NaH ₂ PO ₄ ·2H ₂ O	2.75	MnSO ₄ ·2H ₂ O	0.5	pyridoxine HCl	10.0	
Na ₂ HPO ₄ ·12H ₂ O	11.466	NaCl	NaCl 1.0		5.0	
		FeSO ₄ ·7H ₂ O	0.1	thiamin	5.0	
		$CaCl \cdot 2H_2O$	0.1	nicotinic acid	5.0	
		CoCl ₂ ·6H ₂ O	0.1	Pantothenic acid	5.0	
		ZnSo ₄	0.1	Vitamin B12	0.1	
		CuSO ₄ ·5H ₂ O	0.01	paminobenzoi c acid	5.0	
		AlK(SO ₄) ₂ ·12H ₂ O	0.01	thioctic acid	5.0	
		H_3BO_3	0.01			
		Na ₂ MoO ₄ ·2H ₂ O	0.01			
		NiCl ₂ ·6H ₂ O	0.024			
		$NaWO_4 \cdot 2H_2O$	0.025			

Table S1 Nutrient solution formula used in MFCs.

Table S2 Chemical composition of the samples and N1s components (values given in %of total amount N) based on XPS measurements

Samples	at.% (C)	at.% (O)	at.% (N)	Pyridinic N	Pyrrolic N	Graphitic N	Oxidized N
				(%)	(%)	(%)	(%)
EPGC-700-2	85.35	8.82	5.83	43.73	38.67	6.93	10.67
EPGC-800-1	85.96	9.62	4.43	46.10	35.13	9.42	9.35
EPGC-800-2	86.37	10.01	3.62	67.40	20.88	7.89	3.83
EPGC-800-3	89.82	7.52	2.66	58.91	30.63	4.68	5.78
EPGC-900-2	90.55	7.63	1.82	62.94	25.74	8.32	3.00

Catalysts	Specific surface area (m ² /g)	I_D/I_G	Onset potential (V vs Ag/AgCl)	half-wave potential (V vs Ag/AgCl)	п	Ref.
EPGC-800-2	1137	0.76	0.153	-0.022	3.90	This study
NC/Fe ₈ Co ₂	561.02		-0.02	-0.12	3.87-3.93	[1]
PR-C (1:3.5)	416.7	1.27	0.087	-0.048	3.2	[2]
CE-Fe-MWNT	680	1.05	-0.007	-0.133	3.83	[3]
PAC-800	1273.8	1.05	0.03	-0.13	3.72-3.96	[4]
e-BAC	114	2.26	-0.200	-0.3		[5]
Fe ₃ O ₄ @N-mC	26.73	1.24		-0.257	3.76	[6]
NC-3	609.1	1.13	0.132	-0.041	3.34-3.71	[7]
TGC-900	651.78	1.04	-0.027	-0.154	3.48-3.84	[8]
Mn–Fe@g-C3N4	268.6	1.14	0.197	-0.174	3.94	[9]
ZIF-8	1416		0.11	-0.32	3.83	[10]
CP-M-Z	636.99	2.64	0.16	-0.128	3.87-3.93	[11]
CN800	143		0.215	-0.096	3.1	[12]
HC-900	908.9	1.29	-0.015	-0.129	3.65-3.93	[13]

Table S3 Comparison of the structure and performance of EPGC-800-2 and othercarbon-based ORR catalysts

Fig. S1 (a) CV curves in N₂- and O₂-saturated 50 mM PBS solutions at 5 mV/s, (b)
Tafel plots, (c) LSV curves in O₂-saturated 50 mM PBS with 1600 rpm at 5 mV/s, (d) electron transfer numbers (*n*) and H₂O₂ yield of EPC and EGC.

Reference

[1] C. Han, X. Bo, J. Liu, M. Li, M. Zhou, L. Guo, Fe, Co bimetal activated N-doped graphitic carbon layers as noble metal-free electrocatalysts for high-performance oxygen reduction reaction, J. Alloys Compd. 710 (2017) 57–65.

[2] W. Wang, S. Liu, Y. Liu, W. Jing, R. Zhao, Z. Lei, Phenolic resin/chitosan composite derived nitrogen-doped carbon as highly durable and anti-poisoning electrocatalyst for oxygen reduction reaction, Int. J. Hydrogen Energy. 42 (2017) 26704–26712.

[3] J. Zhang, S. Wu, X. Chen, M. Pan, S. Mu, Egg derived nitrogen-self-doped carbon/carbon nanotube hybrids as noble-metal-free catalysts for oxygen reduction, J. Power Sources. 271 (2014) 522–529.

[4] P. Fu, L. Zhou, L. Sun, B. Huang, Y. Yuan, Nitrogen-doped porous activated carbon derived from cocoon silk as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction, RSC Adv. 7 (2017) 13383–13389.

[5] S. Marzorati, A. Goglio, S. Fest-Santini, D. Mombelli, F. Villa, P. Cristiani, A. Schievano, Air-breathing bio-cathodes based on electro-active biochar from pyrolysis of Giant Cane stalks, Int. J. Hydrogen Energy. 44 (2019) 4496–4507.

[6] H. Zhou, Y. Yang, S. You, B. Liu, N. Ren, D. Xing, Oxygen reduction reaction activity and the microbial community in response to magnetite coordinating nitrogendoped carbon catalysts in bioelectrochemical systems, Biosens. Bioelectron. 122 (2018) 113–120.

[7] B, Jianting Liu A, et al. "A novel hard-template method for fabricating tofu-gel based N self-doped porous carbon as stable and cost-efficient electrocatalyst in microbial fuel cell." International Journal of Hydrogen Energy 44.48(2019):26477-26488.

[8] Liu J , Wei L , Wang H , et al. Biomass-derived N-doped porous activated carbon as a high-performance and cost-effective pH-universal oxygen reduction catalyst in fuel cell[J]. International Journal of Hydrogen Energy, 2020.

[9] A, Kengqiang Zhong , et al. "Highly conductive skeleton Graphitic-C 3 N 4 assisted Fe-based metal-organic frameworks derived porous bimetallic carbon nanofiber for enhanced oxygen-reduction performance in microbial fuel cells." Journal of Power Sources 467.

[10] Xue W , Zhou Q , Li F , et al. Zeolitic imidazolate framework-8 (ZIF-8) as robust catalyst for oxygen reduction reaction in microbial fuel cells[J]. Journal of Power Sources, 2019, 423(MAY 31):9-17.

[11] Yang, W., Dong, Y., Li, J., Fu, Q., Zhang, L., 2020. Templating synthesis of hierarchically meso/macroporous N-doped microalgae derived biocarbon as oxygen reduction reaction catalyst for microbial fuel cells. Int. J. Hydrogen Energy.

[12] Wang X , Yuan C , Shao C , et al. Enhancing oxygen reduction reaction by using metal-free nitrogen-doped carbon black as cathode catalysts in microbial fuel cells

treating wastewater[J]. Environmental Research, 182.

[13] Wenyuan, Jiahuan, Tang, et al. Hierarchically structured carbon materials derived from lotus leaves as efficient electrocatalyst for microbial energy harvesting.[J]. The ence of the total environment, 2019, 666:865-874.