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1 Experimental Procedures

1.1 Materials and Instruments

Unless otherwise mentioned, solvents and reagents were purchased from commercial sources
and used without further purification. Air- and water-sensitive reactions were carried out
under argon atmosphere in dry solvents. NMR spectra were recorded at 400 MHz (Bruker
Avance) or 600 MHz (Bruker Avance lll) spectrometers for *H-NMR spectra, corresponding to
101 MHz or 151 MHz for 3C-NMR spectra, respectively. Unless otherwise mentioned, the
NMR spectra were recorded at 300 K. Chemical shifts are given in parts per million and
referred to the deuterated solvents used. The followed abbreviations are used to describe the
signal multiplicity: s (singlet), d (doublet), t (triplet), g (quartet), quint (quintet), m (multiplet),
dd (doublet of doublets), ddd (doublet of doublet of doublet), td (triplet of doublets), dt
(doublet of triplet). Coupling constants J were given in Hz. High resolution mass spectra
(HRMS) were measured on a Bruker microTOF with APCI (atmospheric pressure chemical
ionization) as ionisation method or on a JOEL AccuTOF-GCX with FD (field desorption) as
ionisation method. UV/Vis spectra were recorded on a Jasco V-670 spectrometer at room
temperature. Photoluminescence spectra were obtained on a Horiba FluoroMax-4
spectrometer at room temperature. IR spectroscopy was carried out on a FT-IR-4700
spectrometer equipped with an ATR unit. Flash chromatography was performed using 60 A
silica gel form Fischer Scientific GmBH or using the flash chromatography system Reveleris X2
Grace equipped with FlashPure ID columns. AFM (atomic force microscopy) measurements
were performed on a dilnnova Bruker machine in tapping mode. Analytical scale HPLC (high
performance liquid chromatography) was carried out on a system from Jasco Deutschland
GmBH with UV detection (UV-2075) and an Orbit 100 C18 (250 x 4.6 mm, 5 um) column. The
purifications by preparative scale HPLC were done on a System from Jasco Deutschland GmbH

with DAD detection (MD-2015) and an Orbit 100 C18 (250 x 20 mm, 5 um) column.

1.2 Electrochemical Procedures

The cyclovoltammetric measurements were carried out in a three-electrode cell with the
potentiostat VersaSTAT 4 from Princeton Applied Research. The gravimetric measurements
were carried out on a EQCM (electrochemical quartz crystal microbalance) system QCM9224A

from Princeton Applied Research. Ag®/Ag* (AgNOs; c=0.01 mol/L, TBAP c=0.1 mol/L,
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Acetonitrile, U=0.60V vs. SHE) was used as reference electrode. Analytical scale film
generations were carried out in a 5 mL cell with Pt-disc electrode (d =1 mm) as working
electrode and a Pt-wire (d = 0.7 mm) as counter electrode. Preparative scale film generation
was done in a 10 mL cell with an ITO coated glass electrode as working electrode and a Pt net
as counter electrode. EQCM measurements were carried out in a 20 mL cell with a Pt coated
quartz crystal (A =0.165 cm?) as working electrode, and a Pt wire (d = 0.7 mm) as counter
electrode. The collected polymer films were removed from the ITO electrode and carefully
washed. After storage in ethanol for three days, the films were washed with supercritical CO,
in a Tousimis Sandri-795 in four cycles (0.5, 1, 2,5, 18 h for supercritical state) and dried. The
gas sorption measurements were carried out on a BEL Japan surface analyser with Krypton at

77 K (p/po: 0.0-0.6).

1.3 Monomer Synthesis

1.3.1 aTC

NO, NO, NH,

NO. NH
c 30% O 94% O
O,N
s3

$1

88%

S4 aTC

Figure S1: Synthetic route to aTC. a) Cu, DMF, 200 °C, 12 h; b) H, (2.3 bar), Pd/C, ethyl acetate
(EA)/ethanol (EtOH) 10/1; ¢) t-BuONa, 1-bromo-2-chlorobenzene, DavePhos catalyst, 1,4-dioxane,
125 °C, 18 h; d) 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), Pd(OAc),, P(t-Bu)s;, o-xylene , 140 °C, 18 h
(53%).



1,5,9-Trinitrotriphenylene (Method A) (52)

Noz O
O‘
O,N

S2

S2 was prepared according to an adapted literature procedure.!! To 2,3-dichloronitrobenzene
(30 g, 156 mmol) and copper powder (60.00 g, 937.50 mmol) DMF (240 mL) was added. The
mixture was stirred for 18 h at 195 °C. After cooling to 120 °C, the mixture was filtered through
celite and the celite washed with DMF (3 x 40 mL). The filtrate was added slowly to a 6.25%
aqueous ammonia solution (1.2 L). The precipitated solid was filtered off and washed several
times with the agueous ammonia solution and finally with water. The brownish solid was
recrystallized from acetone to obtain a brownish solid (24% vyield, ca. 90% purity from
H NMR). The solid was used in the next step without further purification. For analytical
measurements, a small amount was purified by flash chromatography with dichloromethane
(DCM):hexane (Hex) (1:9 = 1:1). *H NMR (400 MHz, CDCl3) 6 [ppm] = 8.15 (dd, J = 8.3, 1.2 Hz,
3H), 793 (dd, J=7.8, 1.1Hz, 1H), 7.70-7.65 (m, 1H). 3C{H}NMR (100 MHz,
CDCls) & [ppm] = 149.6, 129.5, 128.4, 128.3, 125.4, 122.4. HRMS (FD): m/z [M]* found:
363.0466, calcd. for C;gHgN3Og: 363.0491.

Triphenylene-1,5,9-triamine (Method B) (S3)

NH, O
H,N l

S3

S3 was prepared according to an adapted literature procedure with some modification.[! §2
(1g, 2.75 mmol), ethyl acetate (100 mL) and ethanol (10 mL) were put into an autoclave
(Blchi GmbH). Subsequently, palladium on activated carbon (10%) (1.17 g, 1.10 mmol) was
added to the mixture. After stirring under hydrogen (2.3 bar) for 24 h, the mixture was
filtrated through celite and the celite washed with DCM. The filtrate was concentrated in
vacuo to vyield the amine as a light-yellow solid (95%). H NMR (400 MHz,
CDCls) & [ppm] = 8.21 (d, J = 8.0 Hz, 3H), 7.16 (t, J = 7.9 Hz, 3H), 6.87 (d, J = 7.7 Hz, 3H), 5.31 (s,



6H). 13C{H} NMR (100 MHz, CDCls) & [ppm] = 145.6, 131.9, 126.0, 117.8, 114.5, 113.5.
HRMS (FD): m/z [M]* found: 273.1330, calcd. for C;gH15N3: 273.1266.

N1,N5,N9-Tris(2-chlorophenyl)triphenylene-1,5,9-triamine (Method C) (S4)
Cl
CL, e
r
L
RS
oy
S4

S4 was prepared similar to an adapted procedure.l"l $3 (700 mg, 2.59 mmol), sodium-tert-
butoxide (812 mg, 8.45 mmol) and DavePhos-Pd-G3 (195 mg, 256 umol) were added to an
oven-dried vial (20 mL). The vial was sealed, evacuated and refilled with argon three times.
1-Bromo-2-chlorobenzene (1 mL, 9 mmol) and 1,4-dioxane were injected quickly. The
resulting mixture was vigorously shaken, and the vial was placed in a preheated oil-bath
(100 °C). After stirring for 16 h the dark mixture was filtrated through silica gel with
dichloromethane. The solvent was removed in vacuo and the crude product was dried under
high vacuum at 80 °C. Finally, the dark solid was purified by flash chromatography with
DCM:Hex (1:19 = 2:3) as eluent to yield a colourless solid (78%). *H NMR (400 MHz,
CDCl5) & [ppm] = 8.83 (dd, J = 7.5, 2.1 Hz, 3H), 7.60 (s, 3H), 7.37 (dd, J = 7.9, 1.5 Hz, 3H), 7.33-
7.23 (m, 6H), 6.92 (ddd, J = 8.4, 7.3, 1.5 Hz, 3H), 6.72 (ddd, J = 8.0, 7.3, 1.5 Hz, 3H), 6.42 (dd,
J=8.2,1.5 Hz, 3H). 13C{H} NMR (100 MHz, CDCl5) 6 [ppm] = 141.5, 137.7, 130.8, 129.1, 127.0,
126.1, 125.1, 124.9, 121.6, 120.5, 119.4, 115.0. HRMS (FD): m/z [M]* found: 603.1357, calcd.
for C3gH24N5Cl3: 603.1036.



12,19-Dihydro-5H-benzo[1,2-a:3,4-a":5,6-a""]tricarbazole (aTC) (Method D)

aTC

aTC was prepared according to an adapted literature procedure with some modifications."
Pd(AcO), (78 mg, 349 umol) and S4 (800 mg, 1.16 mmol) were dissolved in o-xylene (20 mL).
Subsequently, tri-tert-butylphosphine (86 pl, 349 umol) and 1,8-diazabicyclo[5.4.0Jundec-7-
ene (DBU, 0.8 mL, 5.29 mmol) were added and the mixture heated up to 140 °C. After stirring
for 16 h the dark mixture was filtrated trough a pad of silica, with dichloromethane as eluent.
The solvent was removed in vacuo and the crude product was purified by flash
chromatography with DCM:Hex (1:7) as eluent. Finally, the product was recrystallized from
acetonitrile to give a dark yellow powder (53%). *H NMR (400 MHz, CDCls) & [ppm] = 11.99 (s,
3H), 9.04 (d, J = 8.4 Hz, 3H), 8.63 (d, /= 8.4 Hz, 3H), 8.36 (d, J = 7.7 Hz, 3H), 7.86 (d, J = 7.9 Hz,
3H), 7.51 (ddd, J=8.1, 6.9, 1.2Hz, 3H), 7.32 (ddd, 3H). 3C{H} NMR (100 MHz,
CDCl3) & [ppm] = 140.6, 135.7, 126.8, 125.4, 122.5, 122.0, 119.8, 119.8, 119.4, 117.3, 117.2,
112.1. HRMS (FD): m/z [M]* found: 495.1733, calcd. for CsgHyiNs: 495.1736.
IR: V (cm™) = 3401, 3053, 2970, 2916, 1595, 1575. UV/Vis (chloroform) An. [nm] =331,
(359), (389), (417). PL(chloroform) Amax [NM] (Aexe.=331) =(420), 435, (463). Energy-
level/Bandgap: E,omo [€V] = -5.23, Eiymo [eV] = -2.14, E; [eV] = 3.09.



1.3.2 bTC
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Figure S2: Synthetic route to bTC and bTCu. a) Cu, DMF, 200 °C, 12 h (16%); b) H,, Pd/C, EA:EtOH (10:1)
(97%); c) t-BuONa, 1-bromo-2-chlorobenzene, DavePhos catalyst, 1,4-dioxane, 125 °C, 18 h (29%); d)
DBU, Pd(OAc),, P(t-Bu)s;, o-xylene , 140 °C, 18 h (53%).

The synthesis of the b-connected tricarbazole monomers was carried out with a mixture of
regioisomers. The separation step was implemented after the final synthetic step by

preparative HPLC. The resulting mixtures of the individual synthesis steps were characterized

by mass spectrometry.

Regioisomeric mixture of trinitrotriphenylenes (S6)

NO,
=7

\
= NS
ONT- |
X =

\\‘

NO,

S6

Following method A: Copper powder (48 g, 0.75 mol), 1,2-dibromo-4-nitrobenzene (35 g,
0.12 mol), dimethylformamide (125 mL), yield: 16%. HRMS (FD): m/z [M]* found: 363.0458,
calcd. for Ci1gHgN3Og: 363.0491.



Regioisomeric mixture of triaminotriphenylenes (S7)

NH,
=

NS

7'\

HN-—
A
0\

NH,

S§7

Following method B: S6 (2.31 g, 6.36 mmol), Pd/C (10%) (2.03 g, 1.91 mmol), ethyl acetate
(100 mL), ethanol (10 mL). Yield: 83%. HRMS (FD): m/z [M]* found: 273.1357, calcd. for

C13H15N3: 273.1266.

Regioisomeric Mixture of Tris(2-chlorophenyl)triphenylene-triamines (S8)

S8

Following method C: $7 (800 mg, 2.93 mmol), sodium-tert-butoxide (928 mg, 9.66 mmol),
DavePhos-Pd-G3 (201 mg, 263 umol), 1-bromo-2-chlorobenzene (1.1 mL, 9.37 mmol), 1,4-
dioxane (9 mL). HRMS (FD): m/z [M]* found: 363.0458, calcd. for C;5HgN3O0¢: 363.0491.

At this point, the regioisomeric ratio was calculated with the help of the integrals of the amino-

related protons (*H NMR, Figure 3). Ratio S8a:S8b (9:91)
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Figure $3: 'H NMR spectrum of S8a/b in DMSO-d,.

Mixture of 8,15-dihydro-5H-benzo[1,2-b:3,4-b':6,5-b" ]tricarbazole and 12,19-
dihydro-5H-benzo[1,2-b:3,4-b":5,6-b" Jtricarbazole

bTC bTCu

Following method D: Pd(AcO), (45mg, 0.20 mmol), S8 (400 mg, 661 umol), tri-tert-
butylphosphine (41 mg, 0,20 mmol), 1,8-diazabicyclo[5.4.0]Jundec-7-ene (0.4 mL, 2.64 mmol),
o-xylene (10 mL). HPLC (1:9 H,O/CAN, isocratic, 1mL/min).

bTC: After recrystallisation with ACN, a brownish powdery precipitate is isolated (5%).
'H NMR (600 MHz, DMSO-dg) & [ppm] =11.6 (s, 3H), 9.58 (s, 3H), 8.93 (s, 3H), 8.46 (d,
J=7.7Hz, 3H), 7.59 (d, J = 7.8 Hz, 3H), 7.48 (ddd, /= 8.1, 7.0, 1.2 Hz, 3H), 7.30-7.23 (m, 3H).
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13C{!H} NMR (151 MHz, DMSO-d¢) & [ppm] = 141.6, 140.2, 126.2, 122.8, 122.8, 122.0, 120.8,
115.1, 103.3, 103.3.* HRMS (FD): m/z [M]* found: 495.1800, calcd. for C3gH,1N3: 495.1736.
IR: ¥ (cm™) = 3296, 2954, 2923, 2854, 1765, 1718, 1632, 1608.
UV/Vis (chloroform) Ay [nm] =324, (387). PL (chloroform) Anax [nM] (Aexe. = 387) = (411),
424, (457). Energy-level/Bandgap: Eyomo [€V] = =5.23, E\ymo [eV] = -2.04, E; [eV] = 3.109.

* Only the main signals are listed. The low solubility of the products does not allow for a

resolution of all signals.

bTCu: Obtained as a yellow solid (32 %). *H NMR (600 MHz, DMSO-d¢) 6 [ppm] = 11.40 (s, 1H),
11.34 (s, 1H), 11.31 (s, 1H), 9.78 (s, 1H), 9.76 (s, 1H), 9.61 (s, 1H), 8.92 (s. 1H), 8.76 (s, 1H), 8.74
(s. 1H), 8.52-8.44 (m, 3H), 7.62-7.57 (m, 3H), 7.53-7.45 (m, 3H), 7.34-7.26 (m, 3H).
13¢{1H} NMR (151 MHz, DMSO-d¢) 6 [ppm] = 141.6, 140.0, 139.6, 139.5, 128.9, 128.7, 127.9,
126.4,126.3,126.1,123.6,123.4,123.0,122.9,122.9,122.7,122.7,122.6,121.0, 120.8, 120.6,
199.0, 118.7, 118.6, 118.5, 115.1, 115.1, 114.7, 114.6, 110.9, 103.6, 103.5, 103.4, 103.3,
103.2.* HRMS (FD): m/z [M]* found: 495.1752, caled. for CsgH,1N3: 495.1736.
IR: ¥ (cm™?) = 3545, 3410, 3050, 2981, 2966, 2918, 2853, 1933, 1609. UV/Vis (Chloroform)
Amax. [NM] =312, (336), (357), (407). PL (chloroform) Amax [nM] (Aexe, = 360) =427, (442).
Energy-level/Bandgap: Eyomo [€V] = -5.22, E\ymo [eV] = -2.10, E, [eV] = 3.12.
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1.3.3 Triptycene-based monomers

O,N NO,
9 . ) )
O,N NO, O,N NO,
S9 S$10 S11
b| b
OJO OJ L,
S$12 S$13
c| c
/R R\
HN NH
N N N N
H H H H
S14 S$15
HN O O NH
H H H H
TCC sTCcC

Figure S4: a) 70% HNO;, 80 °C, 4 h (§10 70%, $11 20%); b) H,, Pd/C, EA:EtOH (10:1) (512 88%, S13 99%);
c) t-BuONa, 1-bromo-2-chlorobenzene, DavePhos-catalyst, 1,4-dioxane, 125 °C, 18 h (814 49%, S15
89%); d) PivOH, K1, K,CO3;, DMAc, 110 °C, 16 h (TCC 48%, sTCC 23%).
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2,6,14-Trinitro-9,10-dihydro-9,10-[1,2]benzenoanthracene (S10) and 2,7,15-Trinitro-
9,10-dihydro-9,10-[1,2]benzenoanthracene (S11)

O,N NO,

O,N li g NO, O,N li g NO,

$10 S11

The $10/511 mixture was prepared according to an adapted literature procedure.l" Triptycene
(7 g, 27.52 mmol) was added slowly to nitric acid (70%, 180 mL) at 0 °C. After 2 h, the mixture
was heated up to 80 °C for 4 h. After that the brown mixture was poured into ice water
(500 mL). The precipitate solid was filtered off, re-dissolved in ethyl acetate, washed with
water and brine, and dried over magnesium sulphate. Next, the solvent was removed in vacuo.

The crude product mixture was separated by flash chromatography with EA/Hex (3:17-2>3:7).

$10 is obtained as light-yellow solid (yield: 70%): *H NMR (400 MHz, DMSO-d¢) 6 [ppm] = 8.42
(d,J = 2.3 Hz, 1H), 8.40 (d, J = 2.3 Hz, 2H), 8.05 (dd, J = 2.3; 1.4 Hz, 1H), 8.03 (dd, J = 2.3; 1.5 Hz,
2H), 7.82 (s, 2H), 7.80 (s, 1H), 6.43 (s, 1H), 6.41 (s, 1H). 3C{*H} NMR (101 MHz,
DMSO-dg) 6 [ppm] = 150.5, 150.1, 145.5, 144.9, 144.5, 141.4, 125.6, 125.5, 122.1, 122.0,
119.5, 119.5, 51.4, 51.2, 39.9. HRMS (FD): m/z [M]* found: 389.0749, calcd. for CyoH11N30:
389.0647.

S11 is obtained as colourless solid (yield: 20%): H NMR (400 MHz, DMSO-dg) 6 [ppm] = 8.39
(d, J=2.3 Hz, 3H), 8.03 (dd, /=8.2, 2.3 Hz, 3H), 7.82 (d, /= 8.2 Hz, 3H), 6.44 (s, 1H), 6.39 (s,
1H). 3C{*H} NMR (101 MHz, DMSO-dg) & [ppm] = 149.7, 145.5, 145.3, 125.6, 122.1, 119.4,
51.7, 51.0. HRMS (FD): m/z [M]* found: 389.6253, calcd. for C,oH11N306: 389.0647.
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9,10-Dihydro-9,10-[1,2]benzenoanthracene-2,6,14-triamine (S12)

HoN

crho
S12

Following method B: S10 (1 g, 2.57 mmol), Pd/C (10%) (1.09 g, 1.03 mmol), ethyl acetate
(80 mL), ethanol (8 mL), colourless solid (88%). *H NMR (600 MHz, DMSO-d¢) & [ppm] = 6.95
(d,J = 7.8 Hz, 1H), 6.93 (d, J = 7.7 Hz, 2H), 6.60 (dd, J = 20.6, 2.2 Hz, 3H), 6.10 (td, J = 8.1, 2.2 Hz,
3H), 5.06 (s, 6H), 4.91 (s, 2H). 3C{*H} NMR (151 MHz, DMSO-d¢) & [ppm] = 147.7, 146.9,
145.0, 144.8, 134.4, 133.5, 123.3, 1229, 110.4, 110.0, 108.8, 108.5, 52.4, 51.3.
HRMS (FD): m/z [M]* found: 300.1495, calcd. for C,oH1gN3: 300.1495.

9,10-Dihydro-9,10-[1,2]benzenoanthracene-2,7,15-triamine (S13)

NH,

H,N ‘i ! NH,

S$13

Following method B: S11 (1.10 g, 2.83 mmol), Pd/C (10 %) (1.20 g, 1.13 mmol), ethyl acetate
(80 mL), ethanol (8 mL). Yellow solid (99%). *H NMR (400 MHz, DMSO-dg) 6 [ppm] = 6.93 (d,
J=7.8Hz, 3H), 6.68 (d,J = 2.1 Hz, 3H), 6.16 (dd, J = 7.8, 2.2 Hz, 3H), 5.35-5.27 (m, 6H), 4.97 (d,
J=5.1Hz, 2H). 13C{*H} NMR (101 MHz, DMSO-dg) & [ppm] = 146.1, 143.9, 135.6, 122.6, 111.0,
109.4, 53.4, 50.1. HRMS (FD): m/z [M]* found: 299.1489, calcd. for CygH17N3: 299.1423.
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N2,N6,N14-Tris(2-chlorophenyl)-9,10-dihydro-9,10-[1,2]benzenoanthracene-2,6,14-

triamine (S14)

HN Cl

: jCI ! i ] CI\' :
N N
H H
s14

Following method C: $12 (270 mg, 0,90 mmol), sodium-tert-butoxide (286 mg, 2.98 mmol),
DavePhos-Pd-G3 (68.8 mg, 90 umol), 1-bromo-2-chlorobenzene (330uL, 2.80 mmol), 1,4-
dioxane (8 mL), colourless solid (49%). 'H NMR (600 MHz, DMSO-d¢) & [ppm] =7.48 (d,
J=4.4Hz, 3H), 7.39 (dd, J = 8.1, 3.1 Hz, 3H), 7.26 (dd, J = 7.9, 2.1 Hz, 3H), 7.19-7.12 (m, 9H),
6.90—6.82 (m, 3H), 6.67 (td, J = 7.9, 2.2 Hz, 3H), 5.37 (d, J = 3.4 Hz, 2H) 3C{*H} NMR (151 MHz,
DMSO-dg) 6 [ppm] = 147.0, 146.6, 140.5, 140.5, 139.9, 139.8, 138.4, 137.8, 129.8, 127.7,
123.9, 123.6, 122.7, 122.6, 121.2, 121.2, 118.5, 118.4, 114.7, 114.3, 114.2, 114.0, 52.2, 51.4.
HRMS (ESI): m/z [M+H]* found: 630.1266, calcd. for C3gH,7CI5N3: 630.1265.

N2,N7,N15-Tris(2-chlorophenyl)-9,10-dihydro-9,10-[1,2]benzenoanthracene-2,7,15-

triamine (S15)

Cl NH

: jc| l l C|\l :
N N
H H
s15

Following method C: S13 (840 mg, 2.81 mmol), sodium-tert-butoxide (890 mg, 9.26 mmol),
DavePhos-Pd-G3 (214 mg, 281 umol), 1-bromo-2-chlorobenzene (1 mL, 8.70 mmol), 1,4-
dioxane (8 mL). colorless solid (17%). *H NMR (600 MHz, DMSO-d¢) & [ppm] =7.48 (d,
J=7.0 Hz, 3H), 7.41-7.35 (m, 3H), 7.25 (d, J = 7.9 Hz, 3H), 7.19-7.13 (m, 9H), 6.85 (ddd, J = 8.0,
5.5, 3.4 Hz, 3H), 6.68 (dd, J = 7.9, 2.2 Hz, 3H), 5.38 (d, J = 9.7 Hz, 2H). 3C{*H} NMR (151 MHz,

DMSO-dg) 6 [ppm] = 146.1, 140.6, 139.6, 138.9, 129.8, 127.7, 123.4, 122.6, 121.1, 118.4,
15



115.0, 114.5, 52.9, 50.6. HRMS (FD): m/z [M]* found: 629.1220, calcd. for
C38H26N3C|3: 629.1192.

5,7,13,15-Tetrahydro-7,15-[2,3]epicarbazolobenzo[1,2-b:4,5-b']dicarbazole (TCC)

e

N O" O N
H H
TCC

TCC was prepared according to an adapted literature procedure.ll Potassium carbonate

(Method E)

(552 mg, 3.99 mmol), pivalic acid (41 mg, 0.40 mmol), S14 (280 mg, 444 umol) and the
tricyclohexylphosphine-Bruno-Precatalyst (K1) (87 mg, 0.13 mmol)!V! were added into a vial
(20 mL). The vial was sealed, evacuated and refilled with argon three times. Subsequently
dimethylacetamide (10 mL) was injected quickly. The resulting mixture was vigorously shaken,
and the vial was placed in a preheated oil bath (110 °C). After 16 h the reaction mixture was
cooled down to room temperature and poured into brine. Next, the mixture was extracted
with DCM (5 x). The organic layer was dried over magnesium sulphate, and the solvent was
removed in vacuo. The crude product was dried. Diethyl ether was added to the resulting black
oil, the mixture sonicated and cooled down to -24 °C for 18 h in a freezer. After short cooling
to -78 °C, the white precipitate was filtered off and washed with diethyl ether (cooled to
-78 °C). The grey solid was further purified by recrystallization from toluene (six times,
concentration: 10 mg/1 mL). Yield: 48%. 'H NMR (600 MHz, DMSO-d¢) 6 [ppm] = 11.13 (d,
J=2.2 Hz, 3H), 8.17 (s, 3H), 8.06—8.00 (m, 3H), 7.64-7.62 (m, 3H), 7.46—7.37 (m, 3H), 7.31-7.25
(m, 3H), 7.09 (t, J=7.5Hz, 3H), 5.90 (s, 1H), 5.88 (s, 1H). 3C{*H} NMR (151 MHz, DMSO-
dg) 6 [ppm] = 146.5, 140.0, 137.3, 129.2, 125.5, 124.5, 122.5, 119.5, 118.3, 110.8, 110.8.*
HRMS (FD): m/z [M]* found: 521.2142, calcd. for CsgH,;N3: 521.1892. IR: ¥ (cm™) = 3407,
3052, 2928, 2863, 1716, 1567. UV/Vis (Chloroform)\m.x [nm] =309, (340).
PL (chloroform) Amax. [nm] (Aexe. = 310) = 356, (366), 443, 474, 512. Energy-level/Bandgap:
Enomo [eV] = =5.24, Eymo [eV] =-1.63, Eg [eV] = 3.61.
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* Only the main signals are listed. The low solubility of the products does not allow for a

resolution of all signals.

5,7,9,15-Tetrahydro-7,15-[2,3]epicarbazolobenzo[1,2-b:5,4-b']dicarbazole (sTCC)

A,

)
Qo

sTCC

Following method E: Potassium carbonate (483 mg, 3.49 mmol), pivalic acid (36 mg,
0.35mmol) S15 (245 mg, 388 umol), tricyclohexylphosphine-Bruno-Precatalyst (K1)l
(776 mg, 0,12 mmol), DMA (5 mL). Yield: 23%. *H NMR (600 MHz, DMSO-d¢) & [ppm] = 11.10
(s, 3H), 8.16 (s, 3H), 8.04-8.00 (m, 3H), 7.62 (s, 3H), 7.41-7.38 (m, 3H), 7.26 (ddd, J = 8.1, 7.0,
1.3 Hz, 3H), 7.08 (td, J = 7.5, 6.9, 1.0 Hz, 3H), 5.91 (s, 1H), 5.85 (s, 1H). 3C{*H} NMR (151 MHz,
DMSO-dg) 6 [ppm] = 143.5, 139.9, 137.4, 137.2, 124.4, 122.4, 119.5, 118.7, 114.4, 110.8,
106.8.* HRMS (FD): m/z [M]* found: 521.1890, caled. for CsgHy,3N3: 521.1892.
IR: ¥ (cm™1) = 3403, 3050, 2923, 2852, 1764, 1716, 1595. UV/Vis (chloroform)Am., [nm] = 310,
345.  PL(Chloroform)  Amax [nM] (Aeye. =310) =356, (366).  Energy-level/Bandgap:
Enomo [eV] = -5.23, Eymo [eV] = -1.63, E; [eV] = 3.60.

* Only the main signals are listed. The low solubility of the products does not allow for a

resolution of all signals.
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Figure S5: 1H NMR (top) and 3C{*H} NMR spectra (bottom) of $2 in chloroform.
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3 Electropolymerization Data
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Figure S19: Electropolymerization of aTC. A) analytical scale film generation on a Pt-disc electrode,
c=1mM in DCM, TBAPF,;, 0-1.5V, 0.1 V1. B) preparative scale film generation on an ITO-electrode,
c=1mM in DCM, TBAPFs;, 0-1.7 V, 0.1 Vs™%. C) EQCM, c =1 mM in DCM, TBAPF,;, 0-1.5V, 0.1 Vs, D)
EQCM 20 cycles, c =1 mM in DCM, TBAPF,;, 0-1.5V, 0.1 Vs,
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Figure S20: Electropolymerization of bTC. A) analytical scale film generation on a Pt-disc electrode,
c=0.5mM in DCM, TBAPF,;, 0-1.3 V, 0.1 Vs, B) preparative scale film generation on an ITO-electrode,
c=1mM in DCM, TBAPF,;, 0-1.4 V, 0.1 Vs™%, C) EQCM, c = 0.1 mM in DCM, TBAPF,;, 0-1.3 V, 0.1 Vs, D)
EQCM 20 cycles, ¢ = 0.11 mM in DCM, TBAPF,, 0-1.3 V, 0.1 V-1
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Figure $21: Electropolymerization of bTCu. A) analytical scale film generation on a Pt-disc electrode,
c=0.1mM in ACN, TBAPF,;, 0—1.3 V, 0.1 Vs™1. B) preparative scale film generation on an ITO-electrode,
c=0.1 mM in ACN, TBAPF,; 0-1.4 V, 0.1 Vs71C) EQCM, c = 0.1 mM in ACN, TBAPF;, 0-1.3 V, 0.1 Vs™.. D)
EQCM 20 cycles, c = 0.1 mM in ACN, TBAPFy, 0-1.3 V, 0.1 Vs,
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Figure S22: Electropolymerization of TCC. A) analytical scale film generation on a Pt-disc electrode,
¢ =0.5 mM in DCM, TBAPFs, 0—1.3 V, 0.1 Vs™1. B) preparative scale film generation on an ITO-electrode,
¢ =0.5mM in DCM, TBAPF,;, 0-1.4V, 0.1 Vs™%, C) EQCM, ¢ = 0.1 mM in DCM, TBAPF,;, 0-1.3 V, 0.1 Vs7L,
D) EQCM 20 cycles, ¢ = 0,1 mM in DCM, TBAPF;, 0-1.3 V, 0.1 V5L,
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Figure $23: Electropolymerization of sTCC. A) analytical scale film generation on a Pt-disc electrode,
c=0.1 mM in DCM, TBAPF,;, 0-1.3 V, 0.1 Vs™.. B) preparative scale film generation on an ITO-electrode,
c=0.1 mM in DCM, TBAPF,;, 0-1.4V, 0.1 Vs™1, C) EQCM, c = 0.1 mM in DCM, TBAPF;, 0-1.3 V, 0.1 V571,
D) EQCM 20 cycles, c = 0,1 mM in DCM, TBAPF,;, 0-1.3 V, 0.1 Vs,
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3.6 Stability Measurements
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Figure S24: Cyclic voltammograms of as-prepared polymer films on a Pt-disc electrode in monomer-
free solution. A) paTC, B) pbTC, C) pbTCu, D) psTCC, E) pTCC.

37



4 UV-Vis/PL Spectra
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Figure S25: UV-Vis (solid lines) and PL (dashed lines) spectra. Black lines (monomer spectra in diluted
chloroform solution), red lines (solid state spectra of monomers spin coated onto quartz glass), blue
lines (electrogenerated polymer films on ITO-coated glass). A) paTC, B) pbTC, C) pbTCu, D) psTCC, E)

pTCC.
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5 AFM Measurements
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Figure S26: AFM topology images (tapping mode) of electropolymerized films of the different
polycarbazole networks. A) paTC, B) pbTC, C) bTCu, D) psTCC, E) pTCC.
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