Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Synthesis of free-standing ternary Rh-Pt-SnO₂-carbon nanotubes nanostructures as highly active and robust catalyst for ethanol oxidation

Haixia Wang, Shuhui Sun and Mohamed Mohamedi *

Énergie, Matériaux et Télécommunications (EMT), Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel Boulet, Varennes, Quebec, J3X 1S2, Canada Email: mohamedi@emt.inrs.ca

Figure S1 SEM images of carbon paper substrate (a-b) and as synthesized CNTs (c-d).

Figure S2 XRD of pristine CNTs as synthesized by CVD method.

Figure S3 XPS survey scan and high-resolution XPS of C 1s and O 1s core-levels of the CNTs.

Table ST MICD pulu				
Catalysts	2θ (deg.)	$d_{111}(\text{\AA})$	a (Å)	CS (Å)
Pt/CNT	39.78	2.264	3.922	70.63
Pt/SnO ₂ /CNT	39.76	2.265	3.923	61.25
Rh ₅ /Pt/CNT	39.74	2.266	3.926	57.60
Rh ₅ /Pt/SnO ₂ /CNT	39.72	2.267	3.927	54.73

Table S1 XRD parameters

Figure S4 XPS survey scans of the catalysts grown by PLD onto CNTs substrate.

Figure S5 High-resolution XPS of C 1s core-level.

Figure S6 Binding energies of Sn $3d_{5/2}$, Pt $4f_{7/2}$ and Rh $3d_{5/2}$.

Table	S2	Atomic	surface	composition	estimated	by XPS.	
						2	

				5			
	C (%)	O (%)	SnO ₂ (%)	Pt (%)	Rh (%)	$Rh_{2}O_{3}(\%)$	Rh $3p_{3/2}(\%)$
Pt/CNT	62.35	8.75	-	28.9	-	-	-
SnO ₂ /CNT	15.33	56.14	28.52				
Rh ₅ /CNT	46.84	25.42	-	-	21.47	5.44	
Pt/SnO ₂ /CNT	44.15	21.59	4.47	29.79	-	-	-
Rh ₅ /Pt/CNT	51.26	21.36	-	12.73	10.71	3.94	-
Rh ₅ /Pt/SnO ₂ /CNT	25.51	30.32	2.07	14.1	9.4	2.98	10.6

Figure S7 CO-stripping voltammetry in the base electrolyte 0.5 M H₂SO₄ recorded at 50 mV s⁻¹.

Table S3 Comparative electroactivity of electrocatalysts in 0.5 M H₂SO₄ solution.

		<u> </u>					
Substrate	СР			CNTs			
Catalyst	ESA	ASA	RF	ESA	ASA	RF	
-	(cm^2)	$(m^2 g^{-1})$		(cm^2)	$(m^2 g^{-1})$		
Pt	0.90	2.43	3.8	3.01	8.16	9.79	
Pt/SnO ₂	2.38	6.44	7.7	3.82	10.33	12.40	
Rh ₅ /Pt	0.90	2.44	2.9	3.56	9.63	11.55	
Rh ₅ /Pt/SnO ₂	5.77	15.63	18.7	7.62	20.64	24.76	

Table S4 Comparative electrochemical EOR activity in 1 M $C_2H_5OH + 0.5$ M H_2SO_4 solution.

Substrate		CP		CNTs			
Catalyst	E_{onset}	j_p	MA	Eonset	j_p	MA	
	(V)	$(mA cm^{-2})$	$(mA mg^{-1}_{Pt})$	(V)	$(mA cm^{-2})$	$(mA mg^{-1}_{Pt})$	
Pt	0.232	9.55	79.54	0.23	18.87	157.25	
Pt/SnO ₂	0.168	19.06	158.8	0.16	23.16	193.00	
Rh ₅ /Pt	0.272	11.8	98.08	0.26	21.34	177.83	
Rh ₅ /Pt/SnO ₂	0.167	21.53	179.4	0.16	27.77	213.42	

Table S5 Comparative durability EOR activity in 1 M $C_2H_5OH + 0.5$ M H_2SO_4 solution.

Substrate		CP			CNTs	
Catalyst	$j_{t=0}$	j_{ss}	MA	$\dot{J}_{t=0}$	İss	$M\!A$
-	$(mA cm^{-2})$	$(mA cm^{-2})$	$(mA mg^{-1}_{Pt})$	$(mA cm^{-2})$	$(mA cm^{-2})$	$(mA mg^{-1}_{Pt})$
Pt	13.6	1.66	13.83	23.60	7.12	59.33
Pt/SnO ₂	22.27	6.07	50.58	30.60	12.73	106.08

Rh ₅ /Pt	10.83	4.94	41.16	28.20	11.59	96.58
Rh ₅ /Pt/SnO ₂	28.08	7.00	58.33	32.90	15.86	132.17

 S6 Comparative Electrochemical CO oxidation activity

Substrate		CP			CNTs	
Catalyst	Eonset-COox	ESA_{CO-ox}	$ASA_{\text{CO-ox}}$	Eonset-COox	ESA_{CO-ox}	$ASA_{\text{CO-ox}}$
	(V)	(cm^2)	$(m^2 g^{-1}_{Pt})$	(V)	(cm^2)	$(m^2 g^{-1}_{Pt})$
Pt	0.60	5.66	15.31	0.57	4.04	10.92
Pt/SnO ₂	0.14	5.30	14.30	0.19	5.06	13.70
Rh ₅ /Pt	0.53	6.23	17.00	0.52	4.39	15.76
Rh ₅ /Pt/SnO ₂	0.17	10.84	29.32	0.17	6.91	18.71