Electronic Supplementary Information

Improved H₂ Utilization by Pd doping in Cobalt Catalysts for Reductive

Amination of Polypropylene Glycol

Kyungjun Kim^{1,2}, Dong Woo Kang¹, Youngheon Choi², Wanggyu Kim², Hyunjoo Lee¹, Jae W. Lee^{1*}

¹Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science

and Technology (KAIST), Daejeon 34141, Republic of Korea

²LOTTE CHEMICAL R&D Center, Daejeon 34110, Republic of Korea

Tel: +82-42-350-3940

FAX: +82-42-350-3910

E-mail: jaewlee@kaist.ac.kr.

Secondary polyetheramine

Scheme S1. Reaction mechanism for the formation of secondary polyetheramine.

Catalysts	Contents of Co/Y/Pd ^{a)} (wt%)			c b)	
	Со	Y	Pd	S _{BET} ⁶ , (m²/g)	D _{co} c) (nm)
Co-Y ₂ O ₃ -Pd(0)/MS	34.89	0.527	-	2.15x10 ²	8.2
Co-Y ₂ O ₃ -Pd(0.02)/MS	35.66	0.542	0.018	2.36x10 ²	15.9
Co-Y ₂ O ₃ -Pd(0.03)/MS	35.04	0.532	0.028	2.59x10 ²	16.8
Co-Y ₂ O ₃ -Pd(0.06)/MS	35.42	0.537	0.059	2.49x10 ²	13.9
Co-Y ₂ O ₃ -Pd(0.1)/MS	35.32	0.535	0.105	2.32x10 ²	14.0
Co-Y ₂ O ₃ -Pd(0)	70.17	1.155	-	2.95x10	19.9
Co-Y ₂ O ₃ -Pd(0.02)	68.18	1.113	0.017	2.91x10	19.0
Co-Y ₂ O ₃ -Pd(0.04)	69.30	1.134	0.038	3.10x10	17.9
Co-Y ₂ O ₃ -Pd(0.05)	69.48	1.140	0.054	2.74x10	18.6

Table S1. Catalyst properties of Co-based catalysts including different Pd amounts.

^{a)} Determined by ICP-OES analysis for the fresh catalysts. ^{b)} BET surface area for fresh catalysts. ^{c)} The Co crystal size of the fresh catalysts was estimated by XRD patterns.

Fig. S1. XRD for pre-activated Co-Pd(0.01) at $P(H_2)=50$ bar (A) and XRD for pre-activated Co-Pd(0.02) at $P(H_2)=50$ bar (B). (*): Co⁰.

Fig. S2. XRD for Co-Pd(0) before catalyst activation (A), XRD for Co-Pd(0.01) before catalyst activation (B), XRD for Co-Pd(0.02) before catalyst activation (C), and XRD for Co-Pd(0.04) before catalyst activation (D). (\blacklozenge): Co₃O₄.

Fig. S3. XRD for spent Co-Pd(0) at $P(H_2)=10$ bar (A), XRD for spent Co-Pd(0.01) at $P(H_2)=10$ bar (B), XRD for spent Co-Pd(0.02) at $P(H_2)=10$ bar (C) and XRD for spent Co-Pd(0.04) at $P(H_2)=10$ bar (D). (*): Co⁰, (O): CoO, (\blacklozenge): Co₃O₄.

Fig. S4. XRD for spent Co-Pd(0.01) at $P(H_2)=20$ bar (A) and XRD for spent Co-Pd(0.02) at $P(H_2)=20$ bar (B). (*): Co⁰, (O): CoO, (\blacklozenge): Co₃O₄.

Fig. S5. TEM images for Co-Pd(0) before catalyst activation (A), for Co-Pd(0.04) before catalyst activation (B).

Fig. S6. IR results for PEA product at $P(H_2)=10$ bar by Co-Pd catalysts (A), at $P(H_2)=20$ bar by Co-Pd catalysts.

Fig. S7. Catalytic performance of Co based catalysts such as $Co-Y_2O_3-Pd/MS$, $Co-Y_2O_3-Pd$ and Co-Pd with varying Pd amounts under $P(H_2)=40$ bar.

Reaction conditions are NH₃/PPG-2000=40, PPG-2000: 70g, reaction temperature: 220°C, $P(H_2)=40$ bar and catalyst weight: 3.5 g for Co-Y₂O₃-Pd/MS, 2.0 g for Co-Y₂O₃-Pd and Co-Pd.

Fig. S8. Co 2p XPS for catalysts after reaction at $P(H_2)=10$ bar (A), at $P(H_2)=20$ bar (B). Co 2p peaks in each sample were normalized to compare quantitatively as a way of dividing Co 2p peak intensity with relative ratio of Co 2p area (771 eV to 812 eV) in each sample.

Fig. S9. N 1s XPS for spent Co-Pd(0) after reaction at $P(H_2)=0$ bar.

Fig. S10. XRD for spent Co-Pd(0) at $P(H_2)=0$ bar. (*): Co⁰, (O): CoO.

Fig. S11. N 1s XPS for spent catalysts after reaction at $P(H_2)=20$ bar.

Fig. S12. H_2 -TPD for Co-Pd(0) catalyst depending on H_2 adsorption temperature. Pretreatment conditions: After catalyst reduction in 5.0 % H_2 /Ar by 460 °C, temperature was maintained at 460 °C for 15 min in Ar for removing both free H_2 and adsorbed H_2 . In addition, H_2 was adsorbed at each temperature for 2 h and then the catalysts were cooled to room temperature. Measurement conditions: Ramping rate 10 °C/min, Ar 30 sccm.

Fig. S13. N 1s XPS for Co-Pd(0) after catalyst activation by 5.0 % H_2/Ar by 460 °C (Before nitriding) (A), XPS N1s for Co-Pd(0) after introducing 5.0 % NH₃/He into activated catalyst at 230 °C for 0.5 h (After nitriding) (B), and XPS N1s for Co-Pd(0) after introducing H_2 into Co₃N containing catalyst until temperature reaches to 220 °C (After H_2 reduction of nitride) (C).

Fig. S14. H₂-TPD for Co-Pd catalysts with the step for the formation of cobalt nitride. Pretreatment conditions: After catalyst reduction in 5.0 % H₂/Ar by 460 °C, temperature was maintained at 460 °C for 15min in Ar for removing both free H₂ and adsorbed H₂. And 5.0 % NH₃/He was introduced at 230 °C for 0.5 h to form cobalt nitride. Catalysts were cooled to the room temperature. H₂ was introduced to reduce cobalt nitride until temperature reached to 220 °C, followed by maintaining at 220 °C to remove both free H₂ and adsorbed H₂. Then H₂ was adsorbed at 130 °C for 2 h and catalysts were cooled to the room temperature. Measurement conditions: Ramping rate 10 °C/min, Ar 30 sccm.

Fig. S15. H₂ temperature programmed adsorption of the Co-Pd catalysts containing cobalt nitride. Pretreatment conditions: After catalyst reduction in 5.0 % H₂/Ar by 460 °C and temperature was maintained at 460 °C for 15 min in Ar for removing both free H₂ and adsorbed H₂. 5.0 % NH₃/He was introduced at 230 °C for 0.5 h to form cobalt nitride. Catalysts were cooled to the room temperature. Measurement conditions: Ramping rate 10 °C/min, 5.0 % H₂/Ar 30 sccm.