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Supporting Information
A validation of the analytical method was required prior to 
irradiations. In this sense, solutions of 2 M HNO3 were irradiated 
at a dose rate of 0.1 Gy/s. One solution was irradiated for 7200 s, 
and the gas atmosphere was sampled every 1200 s. Another 
solution was irradiated for 14400 s, and the gaseous atmosphere 
sampled every 20 minutes, starting after 7200 s. The sampled 
volume does not induce any disturbance in the measurement, as 
can be seen in Figure 1S: the two set of data show good 
coherence, and the point at 835 J/Kg (7200 s), match within the 
measurement error. Therefore, this analytical method is validated, 
as the sampling of the gaseous atmosphere does not affect the 
measurements. 

Figure 1S: H2 production in 2 M HNO3 solutions irradiated at a 
dose rate of 0.1 Gy/s. Coherence between data sampled every 
1200 s for samples irradiated 7200 s (in black) and every 1200 s 
for samples irradiated 14400 s, sampling starting after 7200 s (in 
red).

Figure 2S: The SRIM evaluated dose deposition rate vs the 
penetration depth of the alpha particles.

Prior to all irradiation, an in-situ dosimetry is performed using the 
super Fricke chemical dosimeter. The concentration of ferric ions 
is followed by monitoring the absorption at 304 nm (=2197 M-

1cm-1). The evolution of the absorbed dose in time, calculated 
according to equation 2 is presented in Figure 2S, and from the 
slope of these lines we can determine the dose rate.  

(2) 
DFricke =

[Fe3 + ]
G(Fe3 + ) ∙ ρ

Figure 3S: Dose evolution as a function of time for the chosen 
current intensities.
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Figure 4S shows the literature data on the variation of the 
dissociation degree as a function of the HNO3 concentration.

Figure 4S: Literature values for the dissociation degree of HNO3 
showing a decreased dissociation at higher acid concentrations.1–
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