Supplementary Information

C=N linked covalent organic framework for efficient adsorption of iodine in vapor and solution

Sanan Song^a, Yue Shi^b, Ning Liu^{b*}, Fengqi Liu^{a*}

a College of Chemistry, Jilin University, Changchun, Jilin 130012, China.

b Gynecology and Oncology Department of the Second Hospital of Jilin University, Ziqiang Street 218, Changchun 130000, China

* Corresponding authors

1. Figures

Fig. S1 PXRD patterns (blue, major reflections) and simulations (red and black) profiles of (a) Tfp-DB COF, (b) Tfp-BD COF, (c) Tfp-Td

COF.

Fig. S2 TEM images of (a) elemental mapping images of iodine-laden Tfp-DB COF, C-K, N-K, O-K, I-K, from left to right respectively, (b) elemental mapping images of iodine-laden Tfp-BD COF, C-K, N-K, O-K, I-K, from left to right respectively, (c) elemental mapping images of iodine-laden Tfp-Td COF, C-K, N-K, O-K, I-K, from left to right respectively.

Fig. S3 Desorption isotherm of iodine versus contact time at 120 °C

Fig. S4 Thermogravimetric analysis curves of COFs (a) Tfp-DB COF (orange), I_2 -laden Tfp-DB COF (green), (b) Tfp-BD COF (orange), I_2 -laden Tfp-BD COF (green), (c) Tfp-Td COF (orange), I_2 -laden Tfp-Td COF (green).

Fig. S5 PXRD patterns of COFs after the treatment in different organic solvents for 7 days. (a) Tfp-DB COF, (b) Tfp-BD COF, (c) Tfp-Td COF.

Fig. S6 Recyclability of COFs for I_2 adsorption at 75 °C in saturated iodine vapor. (a) Tfp-DB COF, (b) Tfp-BD COF, (c) Tfp-Td COF.

Fig. S7 Recyclability of COFs for I_2 adsorption in the n-hexane solution. (a) Tfp-DB COF, (b) Tfp-BD COF, (c) Tfp-Td COF.

Fig. S8 BET surface area curves for COFs calculated from the N_2 adsorption and desorption. (a) Tfp-DB COF, (b) Tfp-BD COF, (c) Tfp-Td COF.

Fig. S9 lodine adsorption capacities of different adsorbents.

Materials	lodine adsorption capacity (g/g)	Ref.	Materials	lodine adsorption capacity (g/g)	Ref.
IL@PCN-333(AI)1	7.35	S1	H _C OFs-3 ²	3.00	S2
TPB-DMTP ³	6.20	S3	HCMP-1 ⁴	2.91	S4
Tfp-DB COF	5.82	this work	H _C OFs-1 ²	2.90	S2
TPT-BD-COF ⁵	5.43	S5	Micro-COF-1 ⁶	2.90	S6
Tfp-BD COF	5.42	this work	AzoPPN ⁷	2.90	S7
TTA-TTB ³	5.00	S3	BDP-CPP-1 ⁸	2.83	S8
TTPPA ⁹	4.90	S9	HCMP-2 ⁴	2.81	S4
SIOC-COF-7 ¹⁰	4.86	S10	Zr6O ₄ (OH) ₄ (peb) ₆ ¹¹	2.79	S11
CalPOF-1 ¹²	4.77	S12	COF ² ₀ ¹³	2.77	S13
ETTA-TPA ³	4.70	S3	PAF-24 ¹⁴	2.76	S14
COF-DL229 ¹⁵	4.70	S15	BTT-TAPT-COF ¹⁶	2.76	S16
TPT-DHBD ₂₅ -COF 5	4.65	S5	COF-TpgDB ¹⁷	2.75	S17
Tfp-Td COF	4.45	this work	PAF-23 ¹⁴	2.71	S14
NDB-H ¹⁸	4.43	S18	TTA-TFB ³	2.70	S3
TTPB ¹⁹	4.43	S19	NAPOP-4 ²⁰	2.65	S20
TPT-DHBD50-COF	4.30	S5	PAF-25 ¹⁴	2.60	S14

Table S1 lodine adsorption capacities of different adsorbents.

5					
NDB-S ¹⁸	4.25	S18	COP ₂ ⁺⁺¹³	2.58	S13
TPT-DHBD ₇₅ -COF	4.12	S5	CalP3_Li ²¹	2.48	S21
CalPOF-2 ¹²	4.06	S12	NAPOP-3 ²⁰	2.41	S20
Meso-COF-36	4.00	S6	NAPOP-2 ²⁰	2.39	S20
COF-320 ⁶	4.00	S6	Azo-Trip ²²	2.38	S22
TPT-DHBD-COF ⁵	3.88	S5	BDP-CPP-2 ⁸	2.23	S8
POP-2 ²³	3.82	S23	NRPP-2 ²⁴	2.22	S24
COF ¹ ₀ ¹³	3.80	S13	SCMP-2 ²⁰	2.22	S20
TFBCz-PDA ³	3.70	S3	HCMP-4 ⁴	2.22	S4
POP-1 ²³	3.57	S23	CalP4 ²¹	2.20	S21
CalPOF-3 ¹²	3.53	S12	COP1 ⁺⁺¹³	2.12	S13
Micro-COF-2 ⁶	3.50	S6	COP ₂ ⁺¹³	2.11	S13
COF-300 ⁶	3.50	S6	CMPN-3 ²⁵	2.08	S25
SCMP-II ²⁶	3.45	S26	NAPOP-1 ²⁰	2.06	S20
ADB-HS ¹⁸	3.45	S18	NIP-CMP ²⁷	2.02	S27
ADB-S ¹⁸	3.42	S18	COF-TpgBD ¹⁷	1.81	S17
HCMP-3 ⁴	3.36	S4	HKUST-1 ²⁸	1.75	S28
Meso-COF-4 ⁶	3.30	S6	COF-TpgTd ¹⁷	1.66	S17
H _C OFs-2 ²	3.20	S2	FCMP-600@2 ²⁹	1.41	S29
TTDAB ⁹	3.13	S9	ZIF-8 ³⁰	1.25	S30
CalP4_Li ²¹	3.12	S21	UiO-66-PYDC ³⁰	1.25	S30
Tm-MTDAB ⁹	3.04	S9			

2. References

- S1. Y. Tang, H. Huang, J. Li, W. Xue and C. Zhong, J. Mater. Chem. A, 2019, 7, 18324.
- S2. X. Jiang, X. Cui, A. J. E. Duncan, L. Li, R. P. Hughes, R. J. Staples, E. V. Alexandrov, D. M. Proserpio, Y. Wu and C. Ke, *J. Am. Chem. Soc*, 2019, **141**, 10915.

- P. Wang, Q. Xu, Z. Li, W. Jiang, Q. Jiang and D. Jiang, *Adv. Mater.*, 2018, **30**, 1801991.
- S4. Y. Liao, J. Weber, B. M. Mills, Z. Ren and C. F. J. Faul, *Macromolecules*, 2016, **49**, 6322.
- X. Guo, Y. Tian, M. Zhang, Y. Li, R. Wen, X. Li, X. Li, Y. Xue, L. Ma, C. Xia and S. Li, *Chem. Mater.*, 2018, **30**, 2299.
- S6. S. An, X. Zhu, Y. He, L. Yang, H. Wang, S. Jin, J. Hu and H. Liu, *Ind. Eng. Chem. Res.*, 2019, **58**, 10495.
- S7. H. Li, X. Ding and B.-H. Han, *Chem. Eur. J.*, 2016, **22**, 11863.
- S8. Y. Zhu, Y.-J. Ji, D.-G. Wang, Y. Zhang, H. Tang, X.-R. Jia, M. Song, G. Yu and G.-C. Kuang, *J. Mater. Chem. A*, 2017, 5, 6622.
- S9. T. Geng, S. Ye, Z. Zhu and W. Zhang, *J. Mater. Chem. A*, 2018, **6**, 2808.
- S10. Z. J. Yin, S. Q. Xu, T. G. Zhan, Q. Y. Qi, Z. Q. Wu and X. Zhao, *Chem. Commun.*, 2017, **53**, 7266.
- S11. R. J. Marshall, S. L. Griffin, C. Wilson and R. S. Forgan, *Chem. Eur. J.*, 2016, 22, 4870.
- S12. K. Su, W. Wang, B. Li and D. Yuan, Acs Sustainable Chem. Eng., 2018, 6, 17402.
- S13. G. Das, T. Prakasam, S. Nuryyeva, D. S. Han, A. Abdel-Wahab, J.-C. Olsen,
 K. Polychronopoulou, C. Platas-Iglesias, F. Ravaux, M. Jouiad and A. Trabolsi, *J. Mater. Chem. A*, 2016, 4, 15361.
- S14. Z. Yan, Y. Yuan, Y. Tian, D. Zhang and G. Zhu, *Angew. Chem. Int. Ed*, 2015, 54, 12733.
- S15. C. Wang, Y. Wang, R. Ge, X. D. Song, X. Q. Xing, Q. K. Jiang, H. Lu, C. Hao, X. W. Guo, Y. A. Gao and D. L. Jiang, *Chem. Eur. J.*, 2018, **24**, 585.
- S16. X. Pan, X. Qin, Q. Zhang, Y. Ge, H. Ke and G. Cheng, *Microporous Mesoporous Mater*, 2020, **296**, p. 109990.
- S17. Y. Sun, S. Song, D. Xiao, L. Gan and Y. Wang, *Acs Omega*, 2020, **5**, 24262.
- S18. Z. Guo, P. Sun, X. Zhang, J. Lin, T. Shi, S. Liu, A. Sun and Z. Li, *Chem. - Asian J.*, 2018, **13**, 2046.
- S19. T. Geng, Z. Zhu, W. Zhang and Y. Wang, *J. Mater. Chem. A*, 2017, **5**, 7612.
- S20. J.-Y. Weng, Y.-L. Xu, W.-C. Song and Y.-H. Zhang, *J. Polym. Sci., Polym. Chem.*, 2016, **54**, 1724.
- S21. D. Shetty, J. Raya, D. S. Han, Z. Asfari, J.-C. Olsen and A. Trabolsi, *Chem. Mater.*, 2017, **29**, 8968.
- S22. Q. Q. Dang, X. M. Wang, Y. F. Zhan and X. M. Zhang, *Polym. Chem.*, 2016, 7, 643.
- S23. X. Qian, B. Wang, Z.-Q. Zhu, H.-X. Sun, F. Ren, P. Mu, C. Ma, W.-D. Liang and A. Li, *J. Hazard. Mater.*, 2017, **338**, 224.
- S24. Y. H. Abdelmoaty, T.-D. Tessema, F. A. Choudhury, O. M. El-Kadri and H. M. El-Kaderi, *Acs Appl. Mater. Interfaces*, 2018, **10**, 16049.
- S25. Y. Chen, H. Sun, R. Yang, T. Wang, C. Pei, Z. Xiang, Z. Zhu, W. Liang, A. Li

and W. Deng, J. Mater. Chem. A, 2015, 3, 87.

- S26. F. Ren, Z. Zhu, X. Qian, W. Liang, P. Mu, H. Sun, J. Liu and A. Li, *Chem. Commun.*, 2016, **52**, 9797.
- S27. S. A, Y. Zhang, Z. Li, H. Xia, M. Xue, X. Liu and Y. Mu, *Chem. Commun.*, 2014, **50**, 8495.
- S28. D. F. Sava, K. W. Chapman, M. A. Rodriguez, J. A. Greathouse, P. S. Crozier, H. Zhao, P. J. Chupas and T. M. Nenoff, *Chem. Mater.*, 2013, 25, 2591.
- S29. G. Y. Li, C. Yao, J. K. Wang and Y. H. Xu, *Sci. Rep.*, 2017, **7**, 13972.
- S30. G. Mehlana, G. Ramon and S. A. Bourne, *Microporous Mesoporous Mater*, 2016, **231**, 21.