SUPPORTING INFORMATION

Electronic Structure and Mechanism for the Uptake of Nitric Oxide by the Ru(III) Antitumor complex NAMI-A

Eufrásia S. Pereira^a, Gabriel L. S. Rodrigues^{a,b,*}, Willian R. Rocha^{a,*}

^aLaboratório de Estudos Computacionais em Sistemas Moleculares, eCsMo^{lab}
 Departamento de Química, ICEx, Universidade Federal de Minas Gerais
 31270-901, Pampulha, Belo Horizonte, MG, Brazil

^bPresent Address: Department of Physics, Albanova University Center,

Stockholm University, 10691 Stockholm, Sweden

* Corresponding authors. *E-mail addresses:* gabriellibanio@ufmg.br (G. L. S. Rodrigues) ; wrocha@ufmg.br (W. R. Rocha).

Contents

Tables	S3
Figures	S6
ORCA Input Examples	S10
XYZ Structures (all gas phase)	S11

Tables

Table S1: Energy Values obtained for the NAMI-H2O + NO Reaction S3
Table S2: Energy values obtained for the Minimum Energy Crossing Points located between the singlet and triplet potential energy surfaces for the NAMI-H₂O + NO Reaction
Table S3: CASSCF active space details for the calculated molecules
Table S4: SA-CASSCF(4,4)/NEVPT2 (1 root each state) electronic energies (Hartree) for each stationary point of singlet and triplet DFT reaction paths
Table S5: Spin-orbit coupling (T_1-S_1) SA-CASSCF calculations with <i>n</i> electrons and <i>m</i> orbitals and increasing number of singlet (S) and triplet (T) rootsS5
Figures
Figure S1: SA-CASSCF active orbitals for the reactants at the triplet PESS6
Figure S2: SA-CASSCF active orbitals for the transition state at the triplet PESS7
Figure S3: SA-CASSCF active orbitals for the MECP3
Figure S4: CASSCF active orbitals for the products at the singlet PES

Tables

Table S 1: Energy Values obtained for the NAMI-H₂O + NO Reaction (Energy values in a.u and bond length in Å). Gibbs free energy difference (ΔG) are given relative to the most stable (triplet) reactant.*

Parameter		Singlet Surface	
	Reactant	TS	Product
E _h	-2461.19471284	-2461.18927691	-2461.25607305
ZPE	0.19175919	0.19127118	0.19255212
G _{el}	0.14342381	0.14440313	0.14415090
$G\left(E_{h}+G_{el}\right)$	-2461.0512890	-2461.0448708	-2461.1119222
$G_{total} \left(G_{gas} + G_{solv} \right)$	-2461.0838676	-2461.0720207	-2461.1470149
ΔG_g (kcal/mol)	15.67	19.70	-22.38
$\Delta G_{solution}$ (kcal/mol)	14.18	21.62	-25.44
r (Ru-NO)	3.721	2.216	1.746
		Triplet Surface	
E _h	-2461.21623210	-2461.19159159	-2461.21131986
ZPE	0.19028267	0.18858941	0.18978040
G _{el}	0.13996716	0.13731995	0.14008567
$G_{\text{gas}}\left(E_{h}+G_{el}\right)$	-2461.0762649	-2461.0542716	-2461.0712342
$G_{total} \left(G_{gas} + G_{solv} \right)$	-2461.1064709	-2461.0834231	-2461.1081457
ΔG_g (kcal/mol)	0.00	13.80	3.16
$\Delta G_{solution}$ (kcal/mol)	0.00	14.46	-1.05
r (Ru-NO)	4.801	3.675	1.912

* E_h is the total electronic energy in gas phase; ZPE is the Zero Point Energy correction; G_{el} is the thermal correction to the Gibbs free energy; G_{gas} is the Gibbs free energy in gas phase. G_{total} is the total Gibbs free energy of the species including the free energy of solvation. ΔG_g is the variation of the Gibbs free energy in gas phase and $\Delta G_{solution}$ is the variation of the Gibbs free energy in gas phase and $\Delta G_{solution}$ is the variation of the Gibbs free energy in gas phase and $\Delta G_{solution}$ is the variation of the Gibbs free energy in gas phase and $\Delta G_{solution}$ is the variation of the Gibbs free energy in gas phase and $\Delta G_{solution}$ is the variation of the Gibbs free energy in gas phase and $\Delta G_{solution}$ is the variation of the Gibbs free energy in gas phase and $\Delta G_{solution}$ is the variation of the Gibbs free energy in gas phase and $\Delta G_{solution}$ is the variation of the Gibbs free energy in gas phase and $\Delta G_{solution}$ is the variation of the Gibbs free energy in gas phase and $\Delta G_{solution}$ is the variation of the Gibbs free energy in gas phase and $\Delta G_{solution}$ is the variation of the Gibbs free energy in gas phase and $\Delta G_{solution}$ is the variation of the Gibbs free energy in gas phase and $\Delta G_{solution}$ is the variation of the Gibbs free energy in gas phase and $\Delta G_{solution}$ is the variation of the Gibbs free energy in gas phase and $\Delta G_{solution}$ is the variation of the Gibbs free energy in gas phase and $\Delta G_{solution}$ is the variation of the Gibbs free energy in gas phase and $\Delta G_{solution}$ is the variation of the Gibbs free energy in gas phase and $\Delta G_{solution}$ is the variation of the Gibbs free energy in gas phase and $\Delta G_{solution}$ is the variation of the Gibbs free energy in gas phase and $\Delta G_{solution}$ is the variation of the Gibbs free energy in gas phase and $\Delta G_{solution}$ is the variation of the Gibbs free energy in gas phase and $\Delta G_{solution}$ is the variation of the Gibbs free energy in gas phase and ΔG

Table S2: Energy values obtained for the Minimum Energy Crossing Points located between the singlet and triplet potential energy surfaces for the **NAMI-H2O** + NO Reaction (Energy values in a.u and bond length in Å).*

Parameter	MECP1*	MECP2**	MECP3
E _h	-2461.16705241	-2461.22313327	-2461.21211064
ZPE	0.18816361	0.19031238	0.18913759
G _{el}	0.14034759	0.14231518	0.14077524
$G\left(E_{h}+G_{el}\right)$	-2461.0267048	-2461.0808181	-2461.0713354
ΔG_{gas}	31.10	15.97	3.10
r (Ru-NO)	3.311	1.853	1.974

* E_h is the total electronic energy in gas phase; ZPE is the Zero Point Energy correction; G_{el} is the thermal correction to the Gibbs free energy; G_{gas} is the Gibbs free energy in gas phase. ΔG_g is the variation of the Gibbs free energy in gas phase relative to the most stable (triplet) reactant.

Table S3: Details of the CASSCF active space for the calculated molecules.

Molecule	Multiplicity	n _{elec}	n _{orb}	N ^{FOD} (a.u.)
NAMI-A	2	5	5	1.15
NAMI-A-H ₂ O	2	5	5	1.13
NAMI-A-NO-s	1	8	8	0.52
NAMI-A-NO-t	3	6	6	1.56

 $n_{elec} = number of electrons$

 n_{orb} = number of orbitals

 N^{FOD} = amount of static correlation given by the FOD calculation. The larger the number the higher the system is correlated.

Table S4: SA-CASSCF(4,4)/NEVPT2 (1 root each state) electronic energies (Hartree) for each stationary point of singlet and triplet DFT reaction paths.*

Dath	Reactants		TS		Products	
Path	CASSCF	SA-CASSCF	CASSCF	SA-CASSCF	CASSCF	SA-CASSCF
singlet	-7044.776303	-7045.425769	-7045.564376	-7045.465138	-7045.634316	-7045.582499
triplet	-7045.572162	-7045.586165	-7045.573647	-7045.573606	-7045.560354	**

* The numbers in bold shows the structure with lower energy in each one of the stationary points (reactants, TS and products).

**The triplet geometry of the products could not be converged with the SA-CASSCF wavefunction.

Table S5: SA-CASSCF spin-orbit coupling, SOC, (T_1-S_1) calculations, at the MECP geometry, with *n* electrons and *m* orbitals and increasing number of singlet (S) and triplet (T) roots.

N _{roots} (T,S)	Active Space (n,m)	SOC (cm ⁻¹)

1,1	(4,4)	60.80
2,2	(4,4)	56.57
4,4	(4,4)	65.25
6,6	(4,4)	403.9
8,8	(4,4)	510.2
10,10	(4,4)	476.4
6,10	(2,4)	251.7
10,10	(6,8)	442.2
10,10	(8,8)	450.7

Figures

Figure S1: SA-CASSCF active orbitals for the reactants at the triplet PES. OBS: Although illustrated in the picture as HOMO and LUMO, both orbitals are SOMO orbitals with occupation of 1.0. Orbital occupations: HOMO-1 (2.0), HOMO (1.0), LUMO (1.0), LUMO+1 (0.0)

Figure S2: SA-CASSCF active orbitals for the transition state at the triplet PES. OBS: Although illustrated in the picture as HOMO and LUMO, both orbitals are SOMO orbitals with occupation of 1.0. Orbital occupations: HOMO-1 (1.9), HOMO (1.0), LUMO (1.0), LUMO+1 (0.1)

Figure S3: SA-CASSCF active orbitals for the MECP3. **OBS:** HOMO and LUMO orbitals at this point are partially SOMO orbitals in which the NO charge transfer partially happened. **Orbital occupations:** HOMO-1 (1.9), HOMO (1.2), LUMO (0.8), LUMO+1 (0.1)

Figure S4: CASSCF active orbitals for the products at the singlet PES. **Orbital occupations:** HOMO-1 (1.8), HOMO (1.8), LUMO (0.2), LUMO+1 (0.2)

ORCA Input Examples

SA-CASSCF(4,4) – 10 triplet, 10 singlet roots

! old-DKH-TZVP SARC/J RIJCOSX GRIDX6 ! DKH NEVPT2 def2-TZVP/C #--- CASSCF Active Space Parameters %casscf NEl 4 NOrb 4 Mult 3,1 NRoots 10,10 NEVPT2 SC #---- CAS Relativistic ---rel DoSOC True end #---- CAS Convergence ----MaxIter 800 #---- Post Analysis ----PrintWF det CI TPrintWF 0.1 end end #--- Read Pre MO Calculation (CAS 4,4 with 1 root each) ! moread %moinp "namia-no.mecp3.sacas44.nr1.gbw" #--- Print Orbitals %output Print[P_Basis] 2 Print[P MOs] 1 end

MECP optimization

```
! RKS B3LYP def2-TZVP GRID5
! RIJCOSX def2/J GRIDX6
! Freq
! SurfCrossOpt SurfCrossNumFreq
%scf
MaxIter 350
LShift 1.0
ShiftErr 0.05
end
%geom
MaxIter 250
end
%mecp
Mult 3
end
```

XYZ Structures (all gas phase)

NAMIA-A-H₂O optimized

Ru	1.190622000	1.062794000	-0.047438000
Cl	3.261206000	1.979984000	0.307235000
Cl	1.236639000	1.067451000	-2.443532000
Cl	0.447299000	0.853213000	2.179723000
Ν	0.364065000	3.041512000	-0.111654000
С	0.716460000	3.959519000	-0.991331000
Н	1.396398000	3.808683000	-1.810858000
С	-0.515561000	3.641439000	0.766134000
Н	0.210019000	5.979709000	-1.231518000
С	-0.696000000	4.939827000	0.397539000
Н	-1.287802000	5.728264000	0.825820000
Ν	0.094064000	5.123745000	-0.716566000
Н	-0.909929000	3.107639000	1.611601000
S	2.130650000	-1.055271000	0.040059000
0	2.538887000	-1.628708000	1.327144000
С	3.543826000	-1.151066000	-1.069300000
Н	3.247132000	-0.822942000	-2.063331000
Н	3.896615000	-2.181613000	-1.057578000
Η	1.521248000	-3.199187000	-0.769576000
С	1.015016000	-2.234928000	-0.747372000
Η	0.753309000	-1.886830000	-1.744775000
Η	0.129426000	-2.286980000	-0.118801000
Η	4.291751000	-0.478713000	-0.655934000
0	-0.866125000	0.270177000	-0.444254000
Н	-1.227394000	0.777817000	-1.184269000
Η	-1.359656000	0.484679000	0.362855000

NAMIA-A-NO singlet reactants optimized

Ν	2.423879000	2.416057000	2.532241000
0	2.505880000	3.172627000	1.719160000
Ru	0.491401000	0.985177000	-0.307980000
Cl	2.733346000	1.724171000	-0.791372000
Cl	-0.175982000	0.962873000	-2.621760000
Cl	0.721236000	1.008880000	2.076358000
S	1.120726000	-1.173235000	-0.416973000
0	0.008215000	-2.135269000	-0.165977000
С	2.452052000	-1.605106000	0.715388000
Н	3.284923000	-0.926876000	0.536526000
Н	2.730478000	-2.644352000	0.545072000
Н	2.205859000	-2.668367000	-1.919216000

С	1.893919000	-1.626085000	-1.975595000
Η	2.732048000	-0.951879000	-2.143828000
Η	1.140535000	-1.475172000	-2.743981000
Η	2.059203000	-1.469775000	1.719983000
Ν	-0.208572000	2.996264000	-0.244237000
С	0.171345000	3.927295000	-1.096211000
Η	0.872608000	3.783678000	-1.898964000
С	-1.110569000	3.580275000	0.618559000
Η	-0.324277000	5.953766000	-1.315187000
С	-1.270031000	4.890582000	0.277265000
Η	-1.877226000	5.672574000	0.695854000
Ν	-0.445787000	5.093141000	-0.809713000
Η	-1.573010000	3.019039000	1.410594000
0	-1.569507000	0.252719000	-0.060150000
Η	-1.426129000	-0.709300000	0.058030000
Η	-1.854133000	0.352596000	-0.987645000

NAMIA-A-NO singlet products optimized

Ν	0.014679000	1.159926000	1.390579000
Ο	-0.311230000	1.172850000	2.474967000
Ru	0.744128000	1.275882000	-0.191944000
Cl	1.953334000	1.545181000	-2.199566000
Cl	-1.246221000	0.699326000	-1.441921000
Cl	2.788253000	1.880081000	0.978332000
S	1.299134000	-1.059808000	-0.202711000
0	0.464901000	-1.901682000	0.677023000
С	3.027606000	-1.327435000	0.203590000
Η	3.637331000	-0.687995000	-0.431310000
Η	3.241380000	-2.384953000	0.050003000
Η	1.584209000	-2.768666000	-1.798595000
С	1.250412000	-1.733308000	-1.863545000
Η	1.890588000	-1.131578000	-2.503731000
Η	0.217680000	-1.663422000	-2.196179000
Η	3.159999000	-1.040835000	1.243689000
Ν	0.237793000	3.322008000	-0.334869000
С	1.100429000	4.320571000	-0.319675000
Η	2.165834000	4.216404000	-0.214991000
С	-1.024203000	3.860291000	-0.470803000
Η	0.864535000	6.394659000	-0.452065000
С	-0.912409000	5.214409000	-0.530812000
Η	-1.651666000	5.987061000	-0.637573000
Ν	0.436648000	5.484467000	-0.438201000
Η	-1.894951000	3.234665000	-0.543345000
0	-2.373882000	-0.685363000	1.420116000
Η	-1.683674000	-1.361261000	1.375857000

NAMIA-A-NO singlet TS optimized

Ν	0.172039000	1.376219000	1.982625000
0	-0.322713000	2.298860000	2.416387000
Ru	0.640992000	1.126085000	-0.168521000
Cl	2.240282000	1.637442000	-1.784861000
Cl	-1.049044000	0.767053000	-1.788379000
Cl	2.465704000	1.591865000	1.466996000
S	1.255266000	-1.120150000	-0.212451000
0	0.460269000	-2.025813000	0.660732000
С	2.997510000	-1.403756000	0.124090000
Н	3.575699000	-0.738690000	-0.515379000
Н	3.209674000	-2.452242000	-0.082736000
Н	1.541274000	-2.794257000	-1.868738000
С	1.177925000	-1.767285000	-1.888650000
Н	1.781583000	-1.131577000	-2.533241000
Н	0.136266000	-1.717991000	-2.194858000
Н	3.172295000	-1.159853000	1.167846000
Ν	0.108040000	3.180793000	-0.259119000
С	0.988640000	4.161886000	-0.317118000
Н	2.056291000	4.042608000	-0.275985000
С	-1.142433000	3.750260000	-0.367774000
Н	0.799404000	6.236254000	-0.539886000
С	-1.006007000	5.098744000	-0.488614000
Н	-1.730817000	5.884166000	-0.601316000
Ν	0.350795000	5.340205000	-0.456954000
Н	-2.034840000	3.152169000	-0.376071000
0	-1.616947000	-0.166245000	1.082776000
Н	-1.096345000	-0.991447000	1.114198000
Н	-1.981595000	-0.128429000	0.185381000

NAMIA-A-NO triplet reactants optimized

NT	1 004001000	2 957049000	2 5 9 7 1 4 0 0 0 0
IN	-1.004991000	2.85/048000	3.38/140000
0	-0.196318000	3.609612000	3.285543000
Ru	0.732540000	0.978531000	-0.476267000
Cl	2.345395000	1.578888000	-2.015714000
Cl	-0.980858000	0.564896000	-2.083743000
Cl	2.044193000	1.336171000	1.447874000
S	1.336457000	-1.233932000	-0.500590000
0	0.476547000	-2.060435000	0.394070000
С	3.058827000	-1.523979000	-0.079559000
Н	3.671425000	-0.924928000	-0.751781000
Η	3.262287000	-2.588736000	-0.187384000

Η	1.666623000	-2.988958000	-2.065470000
С	1.301645000	-1.965041000	-2.137663000
Н	1.923556000	-1.356550000	-2.792371000
Н	0.268189000	-1.930597000	-2.472254000
Н	3.196545000	-1.187605000	0.944697000
Ν	0.098387000	3.000976000	-0.386876000
С	0.900933000	4.011890000	-0.122674000
Η	1.948187000	3.931137000	0.106468000
С	-1.155096000	3.526221000	-0.615798000
Н	0.596969000	6.081872000	-0.002856000
С	-1.100173000	4.879109000	-0.478352000
Н	-1.853061000	5.639625000	-0.577909000
Ν	0.210402000	5.168713000	-0.169058000
Η	-1.986123000	2.903348000	-0.889487000
0	-0.861674000	0.333779000	0.922010000
Н	-0.599449000	-0.593744000	1.111419000
Η	-1.623866000	0.262119000	0.323836000

NAMIA-A-NO triplet products optimized

		• • • • • • • • • • • •	
Ν	0.122448000	2.191269000	1.455057000
0	-0.464607000	1.866625000	2.395256000
Ru	0.902029000	1.473487000	-0.136950000
Cl	1.832776000	0.526704000	-2.172088000
Cl	-1.260954000	0.920101000	-0.899807000
Cl	3.056612000	2.030821000	0.574150000
S	1.163582000	-0.734326000	0.848442000
0	0.773870000	-0.874394000	2.259994000
С	2.864708000	-1.279237000	0.640578000
Η	3.123475000	-1.202567000	-0.413965000
Н	2.917870000	-2.302215000	1.012387000
Н	0.659394000	-2.942577000	0.195156000
С	0.299184000	-1.967549000	-0.132639000
Н	0.511161000	-1.784587000	-1.184354000
Н	-0.762369000	-1.858800000	0.088059000
Н	3.486468000	-0.612621000	1.230184000
Ν	0.723838000	3.376113000	-1.057023000
С	0.676314000	3.583788000	-2.359428000
Н	0.715633000	2.812552000	-3.109684000
С	0.665646000	4.605635000	-0.438559000
Н	0.537937000	5.323219000	-3.512845000
С	0.585291000	5.571746000	-1.391810000
Н	0.528781000	6.642451000	-1.316819000
Ν	0.590545000	4.904315000	-2.599481000
Н	0.701001000	4.704699000	0.630935000
0	-2.880225000	-1.388403000	0.828597000

Η	-2.679758000	-0.529754000	0.429696000
Η	-2.755302000	-1.265026000	1.776039000

NAMIA-A-NO triplet TS optimized

Ν	-0.711638000	2.051040000	2.738619000
0	-1.590985000	2.771304000	2.875294000
Ru	0.858845000	1.116458000	-0.449975000
Cl	2.348896000	1.492391000	-2.124861000
Cl	-1.130535000	0.619924000	-1.605777000
Cl	2.320423000	1.508161000	1.311953000
S	1.364622000	-1.134282000	-0.424415000
0	0.533157000	-1.955839000	0.484181000
С	3.096365000	-1.461992000	-0.062901000
Н	3.707616000	-0.851753000	-0.725756000
Н	3.277353000	-2.525588000	-0.213323000
Н	1.588214000	-2.883657000	-2.013243000
С	1.265990000	-1.844628000	-2.072365000
Н	1.899914000	-1.262326000	-2.738284000
Н	0.226604000	-1.767737000	-2.381884000
Н	3.264952000	-1.171589000	0.970616000
Ν	0.294234000	3.161204000	-0.429449000
С	1.137468000	4.172646000	-0.352963000
Н	2.205715000	4.087784000	-0.265005000
С	-0.974120000	3.695391000	-0.522672000
Н	0.872793000	6.252656000	-0.351662000
С	-0.884915000	5.052311000	-0.496932000
Н	-1.637454000	5.818306000	-0.543879000
Ν	0.459676000	5.336817000	-0.393048000
Н	-1.841355000	3.068616000	-0.614019000
0	-1.696395000	-0.231879000	1.625002000
Η	-1.028168000	-0.926819000	1.514558000
Н	-2.078065000	-0.140050000	0.742567000

MECP3 (B3LYP)

Ν	-0.157477057	1.123116161	1.824442526
0	-1.189560699	0.759800224	2.166977125
Ru	0.913399932	1.385538882	0.186080292
Cl	2.210845457	1.650820323	-1.741899061
Cl	-1.071392787	0.948964541	-1.042807750
Cl	2.672690824	1.917655958	1.668348092
S	1.525105126	-0.905769051	0.246061152
0	1.022408150	-1.665691063	1.400430910
С	3.313946785	-1.085037855	0.182478937

Η	3.692636777	-0.582177631	-0.704634777
Η	3.525043171	-2.153731197	0.172368398
Н	1.522863940	-2.751233098	-1.224328139
С	1.062062188	-1.764726167	-1.264278755
Η	1.411910810	-1.187027210	-2.117871506
Η	-0.022946059	-1.853945061	-1.273304408
Η	3.705159444	-0.614443938	1.080456001
Ν	0.430572381	3.461875498	0.080787925
С	-0.027066950	4.070094061	-0.996065119
Н	-0.235104938	3.598059302	-1.939102315
С	0.562787122	4.417371806	1.065385555
Η	-0.529939354	6.063121720	-1.400355085
С	0.170320597	5.621250808	0.566175492
Н	0.125464166	6.599171098	1.009902301
Ν	-0.197295318	5.381277738	-0.740065081
Н	0.949264379	4.171904027	2.037654233
0	-2.478679078	-2.076125276	-1.347397156
Н	-2.283584931	-1.173188738	-1.056257062
Н	-2.822481077	-1.975502863	-2.241337725