Electronic Supplementary information

Highly crystalline anatase TiO₂ nanocuboids as an efficient photocatalyst for hydrogen generation

Shubhangi R. Damkale, Sudhir S. Arbuj, Govind G. Umarji,

Sunit B. Rane and Bharat B. Kale*

Centre for Materials for Electronics Technology (C-MET), Off Pashan Road, Panchawati, Pune-411008, Maharashtra, India. E-mail:bbkale1@gmail.com,bbkale@cmet.gov

Figure S1. FTIR spectra of commercial TiO_2 and TiO_2 nanocuboids prepared at 200 °C for 48 h

Figure S2. (a) N_2 adsorption-desorption isotherms and (b) corresponding pore size distribution curves of commercial TiO₂ and as prepared TiO₂ nanocuboids

Possible reactions involved in the formation of TiO_2 nanocuboids

$$TiO_2 + 6HF \longrightarrow H_2[TiF_6] + 2H_2O$$
(S1)

$$H_2[TiF_6] + 3H_2O + 6NH_3 \longrightarrow TiO_2(H_2O) + 6 NH_4F$$
(S2)

$$TiO_2(H_2O) = H_2TiO_3$$

$$H_2 TiO_3 + 3H_2O_2 + 2NH_3 \longrightarrow (NH_4)_2 TiO_6 + 3H_2O$$
(S3)

$$(NH_4)_2 TiO_6 \xrightarrow{EDTA} (NH_4)_2 TiO_6 EDTA$$
 (S4)

Hydrothermal

$$2(NH_4)_2 TiO_6.EDTA + 2H_2O \xrightarrow[condition]{} 2TiO_2 + 4NH_4OH + 3O_2 \quad (S5)$$

Figure S3. Photoluminescence spectra of TiO_2 nanocuboids prepared under different reaction time and temperature conditions

Figure S4. I-V plots of commercial TiO_2 and as prepared TiO_2 nanocuboids with illumination (1.5AM) of light.

Sample	Specific surface area (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	Average pore radius (nm)
Commercial TiO ₂	29.3	0.038	6.64
TiO ₂ -NCs 24 h, 200 °C	122.9	0.459	9.91
TiO ₂ -NCs 48 h, 150 °C	111.6	0.346	6.99
TiO ₂ -NCs 48 h, 180 °C	103.2	0.402	8.85
TiO ₂ -NCs 48 h, 200 °C	85.7	0.495	12.04

Table S1. Specific surface area, pore volume and average pore size of commercial TiO_2 and as prepared TiO_2 nanocuboids

Table S2. Comparison of the photocatalytic H_2 generation activity of anatase TiO_2 nanostructures reported by various researchers with as prepared anatase TiO_2 nanocuboids.

Sr. No.	Photocatalyst	Amount	Light Source	H_2 generation (umol h ⁻¹ g ⁻¹)	Reference
1	TiO ₂ nanocuboids	0.02	400W Hg lamp	3866.44	This work
2	TiO ₂ (3D-flowerlike nanosheets)	1	450W Hg lamp	117.6	1
3	TiO_2 (nanosheets)	0.1	300W Xe lamp	2036	2
4	TiO ₂ (cube-like morphology)	0.05	300W Xe lamp	104.54	3
5	TiO ₂ (twinned nanocrystals)	0.05	300W Xe lamp	1272.66	3
6	TiO ₂ (mesoporous nanofibers)	0.1	300W Xe lamp	231.7	4
7	TiO ₂ (hollow spheres)	0.015	300W Xe lamp	21.2	5

References:

- 1. J. Jitputti, T. Rattanavoravipa, S. Chuangchote, S. Pavasupree, Y. Suzuki and S. Yoshikawa, Low temperature hydrothermal synthesis of monodispersed flowerlike titanate nanosheets, *Catal. Commun.*, 2009, **10**, 378–382.
- Y.-J. Yuan, Z.-J. Ye, H.-W. Lu, B. Hu, Y.-H. Li, D.-Q. Chen, J.-S. Zhong, Z.-T. Yu and
 Z.-G. Zou, Constructing Anatase TiO₂ Nanosheets with Exposed (001)

Facets/Layered MoS₂ Two-Dimensional Nanojunction for Enhanced Solar Hydrogen Generation, *ACS Catal.* 2016, **6**, 532–554.

- G. Cheng, Y. Wei, Ji. Xiong, Y. Gan, J. Zhu and F. Xu, Same titanium glycolate precursor but different products: successful synthesis of twinned anatase TiO₂ nanocrystals with excellent solar photocatalytic hydrogen evolution capability, *Inorg. Chem.Front.*, 2017, 4, 1319–1329.
- H. Hou, M.-H. Shang, F. Gao, L. Wang, Q. Liu, J. Zheng, Z. Yang and W. Yang, Highly Efficient Photocatalytic Hydrogen Evolution in Ternary Hybrid TiO₂/CuO/Cu Thoroughly Mesoporous Nanofibers, *ACS Appl. Mater. Interfaces*, 2016, **8**, 20128-20137.
- L. Li, S. Bai, W. Yin, S. Li, Y. Zhang and Z. Li, A novel etching and reconstruction route to ultrathin porous TiO₂ hollow spheres for enhanced photocatalytic hydrogen evolution, *Int. J. Hydrogen Energ.* 2016, **41**, 1627-1634.