Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supporting Information

In situ Tracking and Characterisation of Scorpionate Ligands *via* ¹¹B-NMR Spectroscopy

Jarrod R. Thomas^a and Scott A. Sulway^{a*}

^aSchool of Chemistry, The University of New South Wales, Sydney 2052, Australia *Corresponding Author E-mail: s.sulway@unsw.edu.au

Table of Contents

1 Experimental	1
2 NMR Spectra of Scorpionates	3
3 Crystallographic Data and Figures of Scorpionate 6	9
4 Reference	11

1 Experimental

General Procedure

All reactions that required an inert atmosphere were carried out using standard Schlenk technique under nitrogen. Pyrazole and 3,5-dimethylpyrzaole were purchased through Sigma-Aldrich without further purification. Pyrazole derivatives of 3-phenylpyrzaole, 3-[2'-pyridyl]-pyrazole and 3-[4'-pyridyl]-pyrazole were prepared adopting a literature procedure¹ and confirmed with ¹H-NMR spectroscopy.

All NMR Data was collected at the Mark Wainwright analytical centre (MWAC) using a 400 MHz Brucker Advanced III fitted with BBFO temperature probes. Deuterated solvents were purchased through Sigma-Aldrich and used without further manipulations. Single crystal XRD experiments were run at MWAC, collected on a Brucker APEX-II CCD diffractometer equipped with a MoK_{α} radiation source ($\lambda = 0.71073$ Å). Single crystal data was processed using Olex2 graphical user interface²; structures were solved using *SHELXT*³ with intrinsic phasing and refined with *SHELXL*⁴ employing a least square minimisation method. The riding model was implemented when solving structures for placement of hydrogen atoms. ATR FTIR data were collected on a Cary 630 FTIR ATR spectrometer. CHN analysis for scorpionates **1-5** were performed at the Campbell Microanalytical Laboratory at the University of Otago.

Potassium hyrdotris(pyrazolyl)borate (KTp) 1

Pyrazole (11.54 g, 169.5 mmol) and KBH₄ (2.31 g, 42.8 mmol) were mixed and place under a nitrogen atmosphere. This solid mixture was heated to roughly 200°C and left to air condense for 24 hrs. The resulting white solid residue was left to cool before being washed with several portions of toluene (4 x 40 ml). During washing, mixture was sonicated to ensure reagent dissolution. Product was isolated via filtration and further washed with toluene (10 ml) and warm hexane (30 ml) to produce a white powder (8.31 g, 33.0 mmol, 77%). Elemental analysis calculated (%) for K₁B₁C₉N₆H₁₀: C 42.87, N 33.33, H 4.00; found: C 43.21, N 33.60, H 3.68. FTIR (KBr disc): 2388 cm⁻¹ (s, v_{B-H}). NMR (*d*₆-acetone, 298 K, 400 MHz): ¹H (400 MHz); δ 7.57 (dd, 3H, ³J_{HH} = 2.10 Hz ⁴J_{HH} = 0.58, pz-H⁵), δ 7.37 (d, 3H, ³J_{HH} = 1.24 Hz, pz-H³) δ 6.02 (dd, 3H, ³J_{HH} = 2.02 and 1.66 Hz, pz-H⁴) δ 4.84 (quart, 1H, ¹J_{HB} = 104.5 Hz, B-H hydride), ¹¹B (128 MHz); δ -1.35 (d, ¹J_{BH} = 107.6 Hz, B-H borate).

Potassium hyrdrotris(3,5-dimethylpyrazolyl)borate (KTp^{Me2}) 2

Method as for scorpionate **1** using 3,5-dimehtylpyrazole (7.75 g, 80.6 mmol) and KBH₄ (1.23 g, 22.8mmol), yielding a white powder (5.04 g, 15.0 mmol, 66%). Elemental analysis calculated (%) for $K_1B_1C_{15}N_6H_{40}$: C 53.57, N 24.99, H 6.59; found: C 53.87, N 24.67, H 6.42. FTIR (KBr disc): 2438 cm⁻¹ (s, v_{B-H}). NMR (d_6 -acetone, 298 K, 400 MHz): ¹H (400 MHz) δ 5.56 (s, 3H, pz-H) δ 4.75 (quart, 1H, ¹ J_{HB} = 93.5 Hz, B-H hydride), δ 2.19 (s, 9H, Me), δ 2.03 (s, 9H, Me), ¹¹B (128 MHz); δ -7.01 (d, ¹ J_{BH} = 99.5 Hz, B-H borate).

Potassium hydrotris(3-phenylpyarzolyl)borate (KTp^{Ph}) 3

Method as for scorpionate **1** using 3-phenylpyrazole (8.54 g, 58.4 mmol) and KBH₄ (1.02 g, 18.9 mmol), at roughly 190°C for 1 hour. Reaction yielded a white powder (5.85 g, 12.0 mmol, 63%). Scorpionate **3** was dissolved in MeCN from which $[KTp^{Ph}(MeCN)_3]$, scorpionate **6**, recrystalised. Elemental analysis calculated (%) for K₁B₁C₂₇N₆H₂₂: C 67.50, N 17.49, H 4.62; found: C 67.51, N 17.38, H 4.39. FTIR (KBr disc): 2403 cm⁻¹ (s, v_{B-H}). NMR (*d*₆-acetone, 298 K, 400 MHz): ¹H (400

MHz); δ 7.84 (d, 2H, ${}^{3}J_{HH}$ = 7.13 Hz, Ph-H), δ 7.71 (d, 1H, ${}^{3}J_{HH}$ = 2.18 Hz, pz-H), δ 7.29 (t, 2H, ${}^{3}J_{HH}$ = 7.61 Hz, Ph-H), δ 7.16 (t, 1H, ${}^{3}J_{HH}$ = 6.04 Hz, Ph-H), δ 6.49 (d, 1H, ${}^{3}J_{HH}$ = 2.20 Hz, pz-H), 11 B (128 MHz); δ -1.00 (d, ${}^{1}J_{BH}$ = 105.1 Hz, B-H borate).

Potassium hydrotris(3-[2'-pyridyl]-pyrazolyl)borate (KTp^{2-py}) 4

Method as for scorpionate **1** using 3-[2'-pyridyl]-pyrazole (2.60 g, 17.9 mmol) and KBH₄ (0.28 g, 5.19 mmol), yielding a white powder (1.50 g, 3.22 mmol, 62%). Elemental analysis calculated (%) for K₁B₁C₂₄N₉H₁₉: C 59.63, N 26.08, H 3.96; found: C 59.52, N 25.93, H 3.89. FTIR (KBr disc): 2433 cm⁻¹ (s, v_{B-H}). NMR (d_6 -acetone, 298 K, 400 MHz): ¹H (400 MHz); $\delta 8.58$ (dd, 1H, ${}^{3}J_{HH}$ = 4.82 Hz, ${}^{4}J_{HH}$ = 0.66 Hz, pz-H), $\delta 7.98$ (d, 1H, ${}^{3}J_{HH}$ = 7.96 Hz, py-H), $\delta 7.80$ (td, 1H, ${}^{3}J_{HH}$ = 7.71, ${}^{4}J_{HH}$ = 1.80 Hz, py-H), $\delta 7.72$ (s, 1H, py-H), $\delta 7.26$ (ddd, 1H, ${}^{3}J_{HH}$ = 7.46 and 4.86 Hz, ${}^{4}J_{HH}$ = 1.10 Hz, py-H), $\delta 6.91$ (d, 1H, ${}^{3}J_{HH}$ = 2.16 Hz, pz-H), ${}^{11}B$ (128 MHz); $\delta -1.41$ (d, ${}^{1}J_{BH}$ = 100.8 Hz, B-H borate).

Potassium hydrotris(3-[4'-pyridyl]-pyrazolyl)borate (KTp^{4-py}) 5

Method as for scorpionate **1** using 3-[4'-pyridyl]-pyrazole (6.34 g, 43.7 mmol) and KBH₄ (0.59 g, 10.9 mmol), yielding a white powder (3.53 g, 7.30 mmol, 67%). Elemental analysis calculated (%) for K₁B₁C₂₄N₉H₁₉: C 59.63, N 26.08, H 3.96; found: C 59.36, N 25.77, H 4.15. FTIR (KBr disc): 2420 cm⁻¹ (s, v_{B-H}). NMR (d_6 -acetone, 298 K, 400 MHz): ¹H (400 MHz); $\delta 8.48$ (d, 2H, ³ J_{HH} = 6.03 Hz, py-H), $\delta 7.80$ (d, 2H, ³ J_{HH} = 6.12 Hz, py-H), $\delta 7.74$ (d, 1H, J_{HH} = 2.25 Hz, pz-H), $\delta 6.68$ (d, 1H, ³ J_{HH} = 2.23 Hz, pz-H), ¹¹B (128 MHz); $\delta - 0.79$ (d, ¹ J_{BH} = 112.4 Hz, B-H borate).

2 NMR Spectra of Scorpionates

Figure S1 ¹H-(top) and ¹¹B-NMR (bottom) spectra of KTp collected in d_6 -acetone. (insert) Molecular structure of the Tp anion. Peak at $\delta(^{11}B) \approx 1$ ppm is due to tetrakis-product.

Scorpionate 2

Figure S2 ¹H-(top) and ¹¹B-NMR (bottom) spectra of KTp^{Me2} collected in d_6 -acetone. (insert) Molecular structure of the Tp^{Me2} anion.

Figure S3 ¹H-(top) and ¹¹B-NMR (bottom) spectra of KTp^{Ph} collected in d_6 -acetone. (insert) Molecular structure of the Tp^{Ph} anion. Peaks at δ (¹¹B) \approx 1 ppm and -7 ppm are due to tetrakis-product and bis-product respectively.

Figure S4 ¹H-(top) and ¹¹B-NMR (bottom) spectra of KTp^{2-py} collected in d_6 -acetone. (insert) Molecular structure of the Tp^{2-py} anion.

Figure S5 ¹H-(top) and ¹¹B-NMR (bottom) spectra of KTp^{4-py} collected in d_6 -acetone. (insert) Molecular structure of the Tp^{4-py} anion. Peak at $\delta(^{11}B) \approx 1.5$ ppm is due to tetrakis-product.

Figure S6. ¹¹B-NMR spectra of aliquots from the reaction producing scorpionate **4**, collected in d_6 -acetone. Aliquots were taken at 12 (blue) and 24 (red) hours. 12-hour aliquot shows presence of scorpionate **4** at δ (¹¹B) = -1.43 ppm and potassium dihydrobis(3-[2'-pyridyl]-pyrazolyl)borate at δ (¹¹B) = -6.46 ppm, whereas the 24-hour aliquot shows scorpionate **4** only at δ (¹¹B) = -1.41 ppm. Curved baselines are due to spectra being acquired in borosilicate NMR tubes.

3 Crystallographic Data and Figures of Scorpionate 6

Figure S7. Asymmetric unit (left) and molecular structure (right) of scorpionate **6** shown with 30% ellipsoid, hydrogens have been omitted for clarity.

Table S1	Crystallographic	data for	scorpionate	6
----------	------------------	----------	-------------	---

.

Empirical formular	$C_{33}H_{31}B_1K_1N_9$
Formula weight/ g mol ⁻¹	603.58
Temperature/ K	273
Crystal system	P-3
Space group	Trigonal
<i>a/</i> Å	15.2163(6)
<i>b/</i> Å	15.2163(6)
c/ Å	8.1910(4)
<i>α</i> / °	90
<i>β</i> / °	90
γ/ °	120
V/ Å ³	1642.42(15)
Ζ	2
Density/ g cm ⁻³	1.220
μ/ mm ⁻¹	0.199
F(000)	632
Crystal size/ mm ³	0.1 × 0.1 × 0.3
Wavelength/ Å	0.71073 (ΜοΚα)
θrange/ ⁰	2.487 – 27.175
Index range	-19 ≤ h ≤ 19, -19 ≤ k ≤ 19, -10 ≤ l ≤ 10
Reflections collected	62318
Independent reflections	2445 (R _{int} = 0.0677, R _{sigma} = 0.0213)
Data/restraints/parameters	2445/3/154
Final R indices $(I \ge 2\sigma(I))$	$R_1 = 0.0466, R_2 = 0.1219$

Final R indices (all data) Goodness-of-fit on F²

4 Reference

- 1 A. J. Amoroso, A. M. C. Thompson, J. C. Jeffery, P. J. Jones, J. A. McCleverty, M. D. Ward, J. Chem. Soc., Chem. Commun., 1994, 2751.
- 2 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339.
- 3 G. M. Sheldrick, Acta Cryst., 2015, A71, 3
- 4 G. M. Sheldrick, Acta Cryst., 2015, C71, 3