## Supporting Information

# High-content and high-throughput identification of macrophage polarization phenotypes

Yingying Geng,<sup>1,2,3</sup> Joseph Hardie,<sup>1,3</sup> Ryan F. Landis,<sup>1</sup> Javier A. Mas-Rosario,<sup>1,2</sup> Aritra Nath Chattopadhyay,<sup>1</sup> Puspam Keshri,<sup>1</sup> Jiadi Sun,<sup>1,4</sup> Erik M. Rizzo,<sup>1</sup> Sanjana Gopalakrishnan,<sup>1</sup> Michelle E. Farkas<sup>1,2\*</sup> and Vincent M. Rotello<sup>1,2\*</sup>

<sup>1</sup> Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA.

<sup>2</sup> Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, USA.

<sup>3</sup> These authors contributed equally: Yingying Geng and Joseph Hardie.

<sup>4</sup> Present address: State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, Jiangsu, China

\*Correspondence Vincent M. Rotello: <u>rotello@chem.umass.edu</u> Michelle E. Farkas: <u>farkas@chem.umass.edu</u>

## Table of contents

| 1. | Synthesis of PONI polymer                                     | S3-4   |
|----|---------------------------------------------------------------|--------|
| 2. | Characterization of PONI polymer and polymer-GFP assembly     | S5-7   |
| 3. | RT-PCR of M1 and M2 activation markers                        | S8-9   |
| 4. | Sensing data                                                  |        |
|    | 4.1 for M1 and M2 subtypes in RAW 264.7 cells                 | S10-12 |
|    | 4.2 for M1 and M2 subtypes in bone marrow-derived macrophages | S13-15 |
|    | 4.3 for RAW 264.7 cells exposed to conditioned media          | S16-17 |

#### 1. Synthesis of PONI polymer

The monomers 1 & 2 were made according to a previous report.<sup>1</sup>



To a 15 mL pear-shaped air-free flask equipped with a stir bar was added **1** (0.5 g, 1.076 mmol, 0.9eq), **2** (39 mg, 0.1196 mmol, 0.1eq) and 5 mL of DCM. In a separate 10ml pear-shaped air-free flask was added Grubbs 3<sup>rd</sup> generation catalyst (13.6 mg, 0.015 mmol) and 1 mL DCM. Both flasks were sealed with septa and attached to a schlenk nitrogen/vacuum line. Both flasks were freeze-pump-thawed three times. After thawing, Grubbs 3<sup>rd</sup> generation catalyst was removed via syringe and quickly added to the flask containing **1** & **2** and allowed to react for 15 min. After the allotted time, ethyl vinyl ether (300 µL) was added and allowed to stir for 20 mins. Afterwards, the reaction was diluted to two times the volume and precipitated into a heavily stirred solution of hexane. The precipitated polymer was filtered and dissolved into tetrahydrofuran (THF). The polymer was precipitated again into hexane and filtered to yield **PONI**. <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>) 11.49 (s, 1H), 8.48 (m, 1H), 6.53 (m, 1H), 6.1 (br, 1H), 5.79 (br 1H), 5.3 (m, 1H), 5.1 (br 1H), 4.5 (br, 1H), 3.58 (t, 3H), 3.41 (m, 4H), 2.88 (m, 1H), 1.9 (m, 2H), 1.59 (s, 9H), 1.51 (m, 24 H), 1.45 (m, 2H). The polymer was also characterized by GPC (gel permeation chromatography) in tetrahydrofuran. The M<sub>W</sub> was 50,209 and the PDI (Poly-dispersity index) was 1.04.



To a 20 mL scintillation vial equipped with a magnetic stir bar was added polymer **PONI** (0.4 g). 4 mL of trifluoroacetic acid was added to dissolve the polymer; the mixture was transferred to a 50 mL round bottom flask equipped with a stir bar and 4 mL of dichloromethane. This mixture was allowed to react at room temperature for two hours, followed by solvent removal via rotary

evaporation with dichloromethane 3 times (5 mL each time). The material was dried under vacuum overnight to yield **PONI-C<sub>3</sub>-Guanidine-C<sub>3</sub>-NH<sub>2</sub>**.



(PONI-C<sub>3</sub>-Guanidine-C<sub>3</sub>-NH-Pyrene)

To a 20 mL scintillation vial equipped with a stir bar was added

Polymer **PONI-C**<sub>3</sub>-**Guanidine-C**<sub>3</sub>-**NH**<sub>2</sub> (approximately 100 mg), which was dissolved in 2 mL of DMSO followed by the addition of ~100  $\mu$ L DIPEA. Separately, pyrene-NHS (3 mg) was dissolved in DMSO, added to the stirred reaction mixture, and allowed to react for two hours at room temperature. The progress of the reaction was monitored with TLC (9.5/0.5 – ethyl acetate/methanol) to ensure the dye was conjugated (free dye moves while polymer remains on the baseline). After the completion of the reaction, the product **PONI-C**<sub>3</sub>-**Guanidine-C**<sub>3</sub>-**NH**-**Pyrene** was precipitated in diethyl ether and centrifuged (repeated twice more to improve the purity). It was then dried under vacuum and used for the experiments.

#### 2. Characterization of PONI polymer and polymer-GFP assembly



**Figure S1. Optical property of PONI-C<sub>3</sub>-Gu-Py.** Absorbance and emission spectra of PONI-C<sub>3</sub>-Gu-Py polymer was measured using Molecular Devices Spectramax M2 plate reader.



Figure S2. Fluorescence titrations (a) and quenching (b). 0.5  $\mu$ M C<sub>3</sub>-Gu-Py was titrated with varying concentrations of EGFP in 10 mM HEPEs buffer. Fluorescence spectrum was recorded at pyrene excitation of 344 nm. A decrease in pyrene emission at 470 nm and increase of EGFP emission at 510 nm was observed. Each value is the average of three independent measurements.



Figure S3. Hydrodynamic size of PONI-C<sub>3</sub>-Gu-Py polymer (a) and polymer-GFP assembly (b) in 10mM HEPEs buffer. C<sub>3</sub>-Gu-Py polymer formed a complex with an average diameter of  $230 \pm 84.4$  nm. With the addition of EGFP, the size of polymer-EGFP assembly is approximately  $237 \pm 97.7$  nm in diameter.



Figure S4. TEM image of PONI-C<sub>3</sub>-Gu-Py polymer (a) and polymer-EGFP assembly (b) in 10 mM HEPEs buffer. C3-Gu-Py polymer formed a complex of size ~25 nm. The difference in sizes measured by DLS and TEM can be attributed to the drying process during TEM sample preparation as well as the high vacuum conditions in the TEM chamber. Upon the addition of EGFP, larger complexes were observed.





Figure S5. Zeta potential of PONI-C<sub>3</sub>-Gu-Py polymer in water. The value is 23.2 ± 5.1 mV.



Figure S6. Characterization of Boc-protected polymer via gel permeation chromatography. GPC trace shows that  $PONI-C_3$ -Guanidine-C<sub>3</sub>-NHBOC has Mw = 26 kDa, Mn = 24.5 kDa and a polydispersity index of 1.06, determined by GPC using polystyrene standards, THF as the eluent, and toluene as the flow marker.

#### 3. RT-PCR of M1 and M2 activation markers



**Figure S7. RT-PCR quantification of M2 state in IL-10 activated RAW 264.7 macrophages.** TGF- $\beta$  is M2-associated gene. Reduction of M1-associated gene iNOS is used to evaluate M2 state. Control = non-treated cells. Fold changes in mRNA level were normalized to  $\beta$ - actin. Statistical significance was determined by two-tailed student t-test. \*= p < 0.1, \*\*= p < 0.05, \*\*\*= p < 0.005, n = 3 biological replicates (3 technical replicates were used each). n.s. = not significant.



Figure S8. RT-PCR quantification of M1-associated genes in primary bone marrow-derived macrophages, according to treatment group. Control = non-treated cells; combo = cells treated with both IFN- $\gamma$  and LPS. Fold changes in mRNA level were normalized to  $\beta$ -actin. \*= p < 0.1, \*\*= p < 0.05, \*\*\*= p < 0.005, n = 3 biological replicates (3 technical replicates were used each). n.s. = not significant.



Figure S9. RT-PCR quantification of key M2 genes in primary bone marrow-derived macrophages, according to treatment group. Control = non-treated cells. Fold changes in mRNA level were normalized to  $\beta$ -actin. \*= p < 0.1, \*\*= p < 0.05, \*\*\*= p < 0.005, n = 3 biological replicates (3 technical replicates were used each). n.s. = not significant.



**Figure S10. RT-PCR quantification macrophages exposed to conditioned media from different cancer cells.** (a) mRNA quantification of M1-associated genes, TNF- $\alpha$  and iNOS. (b) mRNA quantification of M2-associated genes, EGR2 and MR. Control = non-treated cells. MCF7-M and HeLa-M = conditioned media from MCF7 and HeLa cells, respectively. Fold changes in mRNA level were normalized to  $\beta$ -actin. \*= p < 0.1, \*\*= p < 0.05, \*\*\*= p < 0.005, n = 3 biological replicates (3 technical replicates were used each). n.s. = not significant.

## 4. 4.1 Sensing data for M1 and M2 subtypes in RAW 264.7 cells

Table S1. Normalized fluorescence responses and LDA output for M1 and M2 activated RAW 264.7 cells.Score (1) and score (2) correspond to Fig. 3 in the main text.

|           |         |         | LDA o | utput |            |           |           |
|-----------|---------|---------|-------|-------|------------|-----------|-----------|
| Sample    | Pyrene  | Pyrene  | EGFP  | FRET  | Pyrene     | Score (1) | Score (2) |
| name      | monomer | excimer |       |       | minor peak |           |           |
| M1: LPS   | 1.389   | 1.233   | 1.787 | 0.801 | 1.257      | -8.050    | -2.673    |
| M1: LPS   | 1.356   | 1.204   | 1.765 | 0.786 | 1.287      | -10.093   | -1.379    |
| M1: LPS   | 1.351   | 1.196   | 1.739 | 0.819 | 1.285      | -9.452    | -1.357    |
| M1: LPS   | 1.418   | 1.237   | 1.788 | 0.881 | 1.322      | -8.018    | -1.203    |
| M1: LPS   | 1.494   | 1.344   | 1.815 | 0.975 | 1.447      | -7.040    | -2.114    |
| M1: LPS   | 1.563   | 1.376   | 1.877 | 1.046 | 1.514      | -6.671    | -0.947    |
| M1: LPS   | 1.506   | 1.315   | 1.885 | 0.966 | 1.451      | -8.633    | -0.495    |
| M1: LPS   | 1.552   | 1.381   | 1.905 | 0.921 | 1.486      | -8.158    | -1.261    |
| M1: Combo | 1.522   | 1.049   | 1.452 | 1.505 | 1.259      | 7.912     | 6.055     |
| M1: Combo | 1.463   | 1.000   | 1.375 | 1.410 | 1.234      | 6.377     | 7.125     |
| M1: Combo | 1.471   | 1.022   | 1.380 | 1.425 | 1.297      | 5.229     | 7.595     |
| M1: Combo | 1.490   | 1.047   | 1.382 | 1.397 | 1.302      | 5.676     | 7.254     |
| M1: Combo | 1.580   | 1.109   | 1.458 | 1.497 | 1.399      | 6.359     | 8.043     |
| M1: Combo | 1.612   | 1.125   | 1.535 | 1.558 | 1.442      | 5.599     | 8.368     |
| M1: Combo | 1.652   | 1.185   | 1.556 | 1.630 | 1.457      | 7.789     | 6.385     |
| M1: Combo | 1.668   | 1.213   | 1.598 | 1.647 | 1.536      | 5.887     | 6.917     |
| Control   | 1.378   | 1.257   | 1.714 | 1.351 | 1.235      | 0.642     | -8.605    |
| Control   | 1.441   | 1.274   | 1.728 | 1.413 | 1.285      | 1.862     | -6.972    |
| Control   | 1.457   | 1.253   | 1.673 | 1.494 | 1.293      | 3.820     | -5.730    |
| Control   | 1.455   | 1.270   | 1.701 | 1.503 | 1.336      | 2.359     | -5.821    |
| Control   | 1.502   | 1.293   | 1.741 | 1.488 | 1.364      | 2.404     | -4.958    |
| Control   | 1.561   | 1.350   | 1.829 | 1.592 | 1.430      | 2.772     | -5.681    |
| Control   | 1.759   | 1.570   | 1.995 | 1.414 | 1.591      | 2.259     | -5.991    |
| Control   | 1.739   | 1.620   | 2.043 | 1.395 | 1.613      | 0.668     | -8.563    |
| M1: IFN-γ | 1.445   | 1.169   | 1.475 | 1.591 | 1.231      | 8.815     | -3.380    |
| M1: IFN-γ | 1.472   | 1.184   | 1.492 | 1.588 | 1.289      | 7.867     | -2.046    |
| M1: IFN-γ | 1.517   | 1.206   | 1.499 | 1.654 | 1.312      | 9.532     | -1.809    |
| M1: IFN-γ | 1.537   | 1.242   | 1.563 | 1.777 | 1.368      | 9.394     | -2.920    |
| M1: IFN-γ | 1.573   | 1.296   | 1.656 | 1.827 | 1.433      | 8.316     | -3.769    |
| M1: IFN-γ | 1.586   | 1.286   | 1.669 | 1.784 | 1.443      | 7.494     | -2.411    |
| M1: IFN-γ | 1.702   | 1.394   | 1.839 | 1.986 | 1.531      | 9.383     | -4.483    |
| M1: IFN-γ | 1.625   | 1.350   | 1.738 | 1.880 | 1.483      | 8.380     | -4.439    |
| M2: IL-10 | 1.303   | 1.016   | 1.437 | 1.284 | 1.209      | -0.207    | 1.766     |
| M2: IL-10 | 1.319   | 1.028   | 1.481 | 1.243 | 1.252      | -2.077    | 2.744     |

| M2: IL-10 | 1.295 | 1.019 | 1.453 | 1.239 | 1.238 | -2.078 | 2.291 |
|-----------|-------|-------|-------|-------|-------|--------|-------|
| M2: IL-10 | 1.336 | 1.058 | 1.484 | 1.272 | 1.304 | -2.280 | 2.739 |
| M2: IL-10 | 1.338 | 1.070 | 1.477 | 1.270 | 1.276 | -1.147 | 1.634 |
| M2: IL-10 | 1.366 | 1.089 | 1.506 | 1.274 | 1.339 | -2.315 | 2.800 |
| M2: IL-10 | 1.367 | 1.112 | 1.536 | 1.320 | 1.351 | -2.289 | 1.528 |
| M2: IL-10 | 1.380 | 1.132 | 1.513 | 1.341 | 1.360 | -1.140 | 1.043 |
| M2: IL-4  | 1.316 | 1.070 | 1.641 | 0.984 | 1.257 | -7.816 | 2.129 |
| M2: IL-4  | 1.312 | 1.106 | 1.591 | 1.121 | 1.292 | -5.778 | 0.185 |
| M2: IL-4  | 1.340 | 1.108 | 1.628 | 0.949 | 1.316 | -8.366 | 2.657 |
| M2: IL-4  | 1.308 | 1.104 | 1.574 | 1.058 | 1.294 | -6.447 | 0.769 |
| M2: IL-4  | 1.393 | 1.126 | 1.586 | 1.118 | 1.374 | -5.318 | 3.495 |
| M2: IL-4  | 1.365 | 1.178 | 1.666 | 0.988 | 1.377 | -8.520 | 0.928 |
| M2: IL-4  | 1.403 | 1.156 | 1.662 | 1.027 | 1.398 | -7.761 | 3.288 |
| M2: IL-4  | 1.414 | 1.210 | 1.671 | 1.039 | 1.416 | -7.145 | 1.265 |

Table S2. Percentage of accurate classification of M1 and M2 activated RAW 264.7 cells from Jackknifed analysis. The results show an overall 100% correct classification.

|           | M1: Combo | M1: IFN-γ | M2: IL-10 | M2: IL-4 | M1: LPS | Control | % correct |
|-----------|-----------|-----------|-----------|----------|---------|---------|-----------|
| M1: Combo | 8         | 0         | 0         | 0        | 0       | 0       | 100       |
| M1: IFN-γ | 0         | 8         | 0         | 0        | 0       | 0       | 100       |
| M2: IL-10 | 0         | 0         | 8         | 0        | 0       | 0       | 100       |
| M2: IL-4  | 0         | 0         | 0         | 8        | 0       | 0       | 100       |
| M1: LPS   | 0         | 0         | 0         | 0        | 8       | 0       | 100       |
| Control   | 0         | 0         | 0         | 0        | 0       | 8       | 100       |
| Total     | 8         | 8         | 8         | 8        | 8       | 8       | 100       |

Table S3. Prediction of RAW 264.7 cell polarization state using training set from Figure 3 and Table S1. The results show an overall 91% correct unknown identification.

|          |         |         | l/l <sub>o</sub> |       |            |         |            |            |
|----------|---------|---------|------------------|-------|------------|---------|------------|------------|
| Unknown  | Pyrene  | Pyrene  | EGFP             | FRET  | Pyrene     | True ID | Identified | Correct    |
| sample # | monomer | excimer |                  |       | minor peak |         | as         | prediction |
| 1        | 1.405   | 1.167   | 1.682            | 1.112 | 1.256      | LPS     | LPS        | Yes        |
| 2        | 1.346   | 1.081   | 1.680            | 0.983 | 1.275      | LPS     | IL-4       | No         |
| 3        | 1.457   | 1.259   | 1.798            | 1.071 | 1.421      | LPS     | LPS        | Yes        |
| 4        | 1.375   | 1.129   | 1.648            | 1.094 | 1.298      | LPS     | IL-4       | No         |
| 5        | 1.415   | 1.270   | 1.808            | 0.842 | 1.357      | LPS     | LPS        | Yes        |
| 6        | 1.476   | 1.274   | 1.820            | 1.013 | 1.422      | LPS     | LPS        | Yes        |
| 7        | 1.453   | 1.329   | 1.861            | 0.828 | 1.428      | LPS     | LPS        | Yes        |
| 8        | 1.419   | 1.223   | 1.737            | 0.937 | 1.328      | LPS     | LPS        | Yes        |
| 9        | 1.496   | 1.032   | 1.520            | 1.455 | 1.265      | Combo   | Combo      | Yes        |
| 10       | 1.423   | 0.970   | 1.317            | 1.359 | 1.223      | Combo   | Combo      | Yes        |
| 11       | 1.479   | 1.033   | 1.438            | 1.459 | 1.293      | Combo   | Combo      | Yes        |

| 12 | 1.398 | 0.996 | 1.407 | 1.367 | 1.300 | Combo | Combo | Yes |
|----|-------|-------|-------|-------|-------|-------|-------|-----|
| 13 | 1.533 | 1.060 | 1.460 | 1.490 | 1.332 | Combo | Combo | Yes |
| 14 | 1.456 | 1.265 | 1.694 | 1.464 | 1.285 | M0    | MO    | Yes |
| 15 | 1.408 | 1.217 | 1.715 | 1.444 | 1.273 | M0    | M0    | Yes |
| 16 | 1.459 | 1.270 | 1.710 | 1.533 | 1.309 | M0    | MO    | Yes |
| 17 | 1.494 | 1.303 | 1.730 | 1.580 | 1.356 | M0    | M0    | Yes |
| 18 | 1.526 | 1.311 | 1.752 | 1.640 | 1.397 | M0    | MO    | Yes |
| 19 | 1.593 | 1.369 | 1.793 | 1.744 | 1.471 | M0    | MO    | Yes |
| 20 | 1.653 | 1.430 | 1.867 | 1.675 | 1.524 | M0    | M0    | Yes |
| 21 | 1.687 | 1.442 | 1.906 | 1.563 | 1.581 | M0    | MO    | Yes |
| 22 | 1.462 | 1.206 | 1.456 | 1.610 | 1.259 | IFN-γ | IFN-γ | Yes |
| 23 | 1.455 | 1.161 | 1.526 | 1.621 | 1.252 | IFN-γ | IFN-γ | Yes |
| 24 | 1.429 | 1.174 | 1.512 | 1.598 | 1.260 | IFN-γ | IFN-γ | Yes |
| 25 | 1.468 | 1.192 | 1.490 | 1.650 | 1.295 | IFN-γ | IFN-γ | Yes |
| 26 | 1.479 | 1.248 | 1.502 | 1.687 | 1.351 | IFN-γ | IFN-γ | Yes |
| 27 | 1.519 | 1.278 | 1.591 | 1.809 | 1.371 | IFN-γ | IFN-γ | Yes |
| 28 | 1.557 | 1.301 | 1.592 | 1.776 | 1.447 | IFN-γ | IFN-γ | Yes |
| 29 | 1.606 | 1.292 | 1.564 | 1.713 | 1.474 | IFN-γ | IFN-γ | Yes |
| 30 | 1.314 | 1.076 | 1.603 | 1.102 | 1.237 | IL-4  | IL-4  | Yes |
| 31 | 1.298 | 1.069 | 1.595 | 1.145 | 1.242 | IL-4  | IL-4  | Yes |
| 32 | 1.323 | 1.082 | 1.645 | 1.160 | 1.246 | IL-4  | IL-4  | Yes |
| 33 | 1.337 | 1.134 | 1.657 | 1.121 | 1.296 | IL-4  | IL-4  | Yes |
| 34 | 1.326 | 1.116 | 1.624 | 1.142 | 1.288 | IL-4  | IL-4  | Yes |
| 35 | 1.366 | 1.169 | 1.656 | 1.232 | 1.356 | IL-4  | IL-4  | Yes |
| 36 | 1.403 | 1.171 | 1.624 | 1.277 | 1.391 | IL-4  | IL-10 | No  |
| 37 | 1.382 | 1.141 | 1.602 | 1.231 | 1.372 | IL-4  | IL-10 | No  |
| 38 | 1.355 | 1.032 | 1.525 | 1.270 | 1.266 | IL-10 | IL-10 | Yes |
| 39 | 1.301 | 1.049 | 1.509 | 1.262 | 1.249 | IL-10 | IL-10 | Yes |
| 40 | 1.377 | 1.090 | 1.615 | 1.276 | 1.314 | IL-10 | IL-10 | Yes |
| 41 | 1.343 | 1.097 | 1.526 | 1.312 | 1.307 | IL-10 | IL-10 | Yes |
| 42 | 1.389 | 1.102 | 1.571 | 1.247 | 1.338 | IL-10 | IL-10 | Yes |
| 43 | 1.359 | 1.125 | 1.524 | 1.277 | 1.342 | IL-10 | IL-10 | Yes |
| 44 | 1.441 | 1.143 | 1.613 | 1.368 | 1.387 | IL-10 | IL-10 | Yes |
| 45 | 1.393 | 1.148 | 1.574 | 1.319 | 1.398 | IL-10 | IL-10 | Yes |

## 4.2 Sensing data for M1 and M2 subtypes in bone marrow-derived macrophages

Table S4. Normalized fluorescence responses and LDA output for polarized primary bone marrow-derivedmacrophages. Score (1) and score (2) correspond to Fig. 4 in the main text.

|           |         |         | LDA output |       |            |           |           |
|-----------|---------|---------|------------|-------|------------|-----------|-----------|
| Sample    | Pyrene  | Pyrene  | EGFP       | FRET  | Pyrene     | Score (1) | Score (2) |
| name      | monomer | excimer |            |       | minor peak |           |           |
| Control   | 1.239   | 1.042   | 1.317      | 1.187 | 1.182      | -9.640    | -0.413    |
| Control   | 1.264   | 1.069   | 1.345      | 1.205 | 1.189      | -9.779    | 0.842     |
| Control   | 1.334   | 1.112   | 1.407      | 1.259 | 1.266      | -7.781    | 2.211     |
| Control   | 1.349   | 1.135   | 1.475      | 1.279 | 1.270      | -7.137    | 2.528     |
| Control   | 1.296   | 1.135   | 1.440      | 1.266 | 1.237      | -9.886    | 1.782     |
| Control   | 1.317   | 1.136   | 1.444      | 1.271 | 1.244      | -9.452    | 2.313     |
| Control   | 1.313   | 1.113   | 1.455      | 1.269 | 1.250      | -8.166    | 1.001     |
| Control   | 1.303   | 1.119   | 1.488      | 1.295 | 1.249      | -9.420    | -0.145    |
| M1: IFN-γ | 1.227   | 0.997   | 1.272      | 1.103 | 1.168      | -4.761    | 0.108     |
| M1: IFN-γ | 1.235   | 1.004   | 1.266      | 1.112 | 1.155      | -6.250    | 0.666     |
| M1: IFN-γ | 1.259   | 1.045   | 1.307      | 1.148 | 1.200      | -5.874    | 1.425     |
| M1: IFN-γ | 1.254   | 1.013   | 1.301      | 1.162 | 1.225      | -5.328    | -0.866    |
| M1: IFN-γ | 1.255   | 1.024   | 1.353      | 1.157 | 1.197      | -4.886    | -0.330    |
| M1: IFN-γ | 1.247   | 1.063   | 1.381      | 1.179 | 1.217      | -5.687    | 0.023     |
| M1: IFN-γ | 1.306   | 1.085   | 1.454      | 1.238 | 1.256      | -5.219    | 0.241     |
| M1: IFN-γ | 1.304   | 1.090   | 1.424      | 1.242 | 1.244      | -7.133    | 0.760     |
| M1: LPS   | 1.242   | 0.880   | 1.259      | 0.957 | 1.204      | 9.808     | -0.936    |
| M1: LPS   | 1.247   | 0.908   | 1.256      | 0.977 | 1.245      | 9.695     | -0.518    |
| M1: LPS   | 1.303   | 0.923   | 1.237      | 0.991 | 1.279      | 10.436    | 1.540     |
| M1: LPS   | 1.298   | 0.960   | 1.350      | 1.033 | 1.291      | 10.526    | 0.594     |
| M1: LPS   | 1.305   | 0.968   | 1.395      | 1.034 | 1.269      | 10.848    | 1.037     |
| M1: LPS   | 1.359   | 0.961   | 1.409      | 1.069 | 1.282      | 10.509    | 1.383     |
| M1: LPS   | 1.375   | 0.975   | 1.446      | 1.117 | 1.319      | 9.840     | 0.320     |
| M1: LPS   | 1.342   | 0.979   | 1.473      | 1.113 | 1.303      | 9.615     | -0.601    |
| M1: Combo | 1.187   | 0.908   | 1.213      | 0.967 | 1.205      | 6.085     | -1.459    |
| M1: Combo | 1.213   | 0.917   | 1.225      | 0.962 | 1.196      | 6.723     | 0.043     |
| M1: Combo | 1.220   | 0.942   | 1.250      | 1.008 | 1.219      | 4.855     | -0.387    |
| M1: Combo | 1.291   | 0.979   | 1.296      | 1.054 | 1.256      | 5.165     | 1.596     |
| M1: Combo | 1.279   | 0.979   | 1.334      | 1.067 | 1.250      | 4.925     | 0.514     |
| M1: Combo | 1.289   | 0.988   | 1.362      | 1.079 | 1.259      | 5.326     | 0.573     |
| M1: Combo | 1.273   | 0.979   | 1.340      | 1.073 | 1.246      | 4.415     | 0.106     |
| M1: Combo | 1.376   | 1.029   | 1.450      | 1.159 | 1.301      | 4.980     | 1.873     |
| M2: IL-4  | 1.268   | 0.927   | 1.257      | 1.058 | 1.233      | 3.275     | -1.086    |
| M2: IL-4  | 1.258   | 0.953   | 1.251      | 1.050 | 1.211      | 1.883     | 0.353     |

| M2: IL-4  | 1.256 | 0.949 | 1.221 | 1.064 | 1.215 | 0.247  | -0.078 |
|-----------|-------|-------|-------|-------|-------|--------|--------|
| M2: IL-4  | 1.253 | 0.960 | 1.237 | 1.071 | 1.235 | 0.807  | -0.282 |
| M2: IL-4  | 1.283 | 0.983 | 1.309 | 1.104 | 1.241 | 1.096  | 0.129  |
| M2: IL-4  | 1.325 | 1.019 | 1.358 | 1.135 | 1.294 | 2.740  | 1.261  |
| M2: IL-4  | 1.306 | 1.010 | 1.384 | 1.128 | 1.247 | 1.786  | 0.721  |
| M2: IL-4  | 1.337 | 1.052 | 1.412 | 1.169 | 1.293 | 1.475  | 1.739  |
| M2: IL-10 | 1.173 | 0.915 | 1.232 | 1.031 | 1.167 | -0.168 | -3.173 |
| M2: IL-10 | 1.079 | 0.885 | 1.207 | 0.979 | 1.083 | -2.150 | -5.076 |
| M2: IL-10 | 1.153 | 0.919 | 1.187 | 1.018 | 1.142 | -2.227 | -2.581 |
| M2: IL-10 | 1.168 | 0.912 | 1.200 | 1.027 | 1.129 | -2.665 | -2.570 |
| M2: IL-10 | 1.215 | 0.989 | 1.277 | 1.112 | 1.215 | -3.139 | -1.565 |
| M2: IL-10 | 1.168 | 0.974 | 1.274 | 1.095 | 1.146 | -5.825 | -2.543 |
| M2: IL-10 | 1.234 | 1.003 | 1.325 | 1.134 | 1.227 | -2.697 | -1.539 |
| M2: IL-10 | 1.252 | 0.993 | 1.376 | 1.134 | 1.200 | -1.791 | -1.534 |

 Table S5. Percentage of accurate classification of polarized primary bone marrow-derived macrophages

 from Jackknifed analysis.
 The results show an overall 96% correct classification.

|           | M1: Combo | M1: IFN-γ | M2: IL-10 | M2: IL-4 | M1: LPS | Control | % correct |
|-----------|-----------|-----------|-----------|----------|---------|---------|-----------|
| M1: Combo | 8         | 0         | 0         | 0        | 0       | 0       | 100       |
| M1: IFN-γ | 0         | 7         | 0         | 0        | 0       | 1       | 88        |
| M2: IL-10 | 0         | 1         | 7         | 0        | 0       | 0       | 88        |
| M2: IL-4  | 0         | 0         | 0         | 8        | 0       | 0       | 100       |
| M1: LPS   | 0         | 0         | 0         | 0        | 8       | 0       | 100       |
| Control   | 0         | 0         | 0         | 0        | 0       | 8       | 100       |
| Total     | 8         | 8         | 7         | 8        | 8       | 9       | 96        |

Table S6. Prediction of primary bone marrow-derived macrophages polarization state using training setfrom Figure 4 and Table S4. The results show an overall 92% correct unknown identification.

|          |         |         | l/l <sub>o</sub> |       |            |         |            |            |
|----------|---------|---------|------------------|-------|------------|---------|------------|------------|
| Unknown  | Pyrene  | Pyrene  | EGFP             | FRET  | Pyrene     | True ID | Identified | Correct    |
| sample # | monomer | excimer |                  |       | minor peak |         | as         | prediction |
| 1        | 1.246   | 1.051   | 1.346            | 1.178 | 1.174      | M0      | M0         | Yes        |
| 2        | 1.230   | 1.026   | 1.289            | 1.163 | 1.183      | MO      | M0         | Yes        |
| 3        | 1.274   | 1.077   | 1.375            | 1.196 | 1.212      | MO      | IFN-γ      | No         |
| 4        | 1.266   | 1.092   | 1.364            | 1.252 | 1.224      | MO      | M0         | Yes        |
| 5        | 1.289   | 1.106   | 1.422            | 1.270 | 1.224      | MO      | M0         | Yes        |
| 6        | 1.306   | 1.064   | 1.397            | 1.219 | 1.237      | MO      | IFN-γ      | No         |
| 7        | 1.349   | 1.143   | 1.438            | 1.298 | 1.281      | MO      | M0         | Yes        |
| 8        | 1.353   | 1.131   | 1.468            | 1.274 | 1.240      | MO      | MO         | Yes        |
| 9        | 1.247   | 1.042   | 1.340            | 1.153 | 1.206      | IFN-γ   | IFN-γ      | Yes        |
| 10       | 1.223   | 1.014   | 1.299            | 1.134 | 1.177      | IFN-γ   | IFN-γ      | Yes        |
| 11       | 1.234   | 1.037   | 1.319            | 1.145 | 1.182      | IFN-γ   | IFN-γ      | Yes        |

| 12 | 1.282 | 1.067 | 1.386 | 1.216 | 1.256 | IFN-γ | IFN-γ | Yes |
|----|-------|-------|-------|-------|-------|-------|-------|-----|
| 13 | 1.280 | 1.090 | 1.448 | 1.245 | 1.240 | IFN-γ | IFN-γ | Yes |
| 14 | 1.212 | 1.037 | 1.325 | 1.149 | 1.197 | IFN-γ | IFN-γ | Yes |
| 15 | 1.247 | 1.047 | 1.345 | 1.184 | 1.221 | IFN-γ | IFN-γ | Yes |
| 16 | 1.279 | 1.072 | 1.427 | 1.216 | 1.257 | IFN-γ | IFN-γ | Yes |
| 17 | 1.279 | 0.970 | 1.414 | 1.045 | 1.285 | LPS   | LPS   | Yes |
| 18 | 1.336 | 0.993 | 1.431 | 1.078 | 1.293 | LPS   | LPS   | Yes |
| 19 | 1.391 | 0.985 | 1.428 | 1.074 | 1.340 | LPS   | LPS   | Yes |
| 20 | 1.377 | 1.000 | 1.484 | 1.108 | 1.315 | LPS   | LPS   | Yes |
| 21 | 1.346 | 0.979 | 1.446 | 1.053 | 1.299 | LPS   | LPS   | Yes |
| 22 | 1.352 | 0.960 | 1.461 | 1.088 | 1.294 | LPS   | LPS   | Yes |
| 23 | 1.227 | 0.913 | 1.247 | 0.983 | 1.234 | LPS   | Combo | No  |
| 24 | 1.270 | 0.932 | 1.250 | 0.982 | 1.234 | LPS   | LPS   | Yes |
| 25 | 1.205 | 0.934 | 1.219 | 0.981 | 1.231 | Combo | Combo | Yes |
| 26 | 1.248 | 0.956 | 1.281 | 1.041 | 1.236 | Combo | Combo | Yes |
| 27 | 1.189 | 0.954 | 1.289 | 1.011 | 1.232 | Combo | Combo | Yes |
| 28 | 1.201 | 0.942 | 1.249 | 1.036 | 1.248 | Combo | Combo | Yes |
| 29 | 1.304 | 1.042 | 1.461 | 1.149 | 1.272 | Combo | Combo | Yes |
| 30 | 1.181 | 0.926 | 1.217 | 1.014 | 1.229 | Combo | Combo | Yes |
| 31 | 1.251 | 0.989 | 1.342 | 1.083 | 1.284 | Combo | Combo | Yes |
| 32 | 1.288 | 0.965 | 1.321 | 1.096 | 1.274 | Combo | IL-4  | No  |
| 33 | 1.305 | 1.016 | 1.405 | 1.129 | 1.228 | IL-4  | IL-4  | Yes |
| 34 | 1.319 | 1.007 | 1.413 | 1.147 | 1.269 | IL-4  | IL-4  | Yes |
| 35 | 1.326 | 1.038 | 1.432 | 1.155 | 1.283 | IL-4  | IL-4  | Yes |
| 36 | 1.268 | 0.927 | 1.257 | 1.058 | 1.233 | IL-4  | IL-4  | Yes |
| 37 | 1.258 | 0.953 | 1.251 | 1.050 | 1.211 | IL-4  | IL-4  | Yes |
| 38 | 1.256 | 0.949 | 1.221 | 1.064 | 1.215 | IL-4  | IL-4  | Yes |
| 39 | 1.253 | 0.960 | 1.237 | 1.071 | 1.235 | IL-4  | IL-4  | Yes |
| 40 | 1.283 | 0.983 | 1.309 | 1.104 | 1.241 | IL-4  | IL-4  | Yes |
| 41 | 1.185 | 0.955 | 1.232 | 1.093 | 1.173 | IL-10 | IL-10 | Yes |
| 42 | 1.170 | 0.922 | 1.188 | 1.029 | 1.159 | IL-10 | IL-10 | Yes |
| 43 | 1.117 | 0.921 | 1.210 | 1.056 | 1.172 | IL-10 | IL-10 | Yes |
| 44 | 1.211 | 0.985 | 1.264 | 1.094 | 1.231 | IL-10 | IL-10 | Yes |
| 45 | 1.206 | 0.975 | 1.264 | 1.117 | 1.197 | IL-10 | IL-10 | Yes |
| 46 | 1.286 | 1.040 | 1.453 | 1.165 | 1.237 | IL-10 | IL-10 | Yes |
| 47 | 1.213 | 0.983 | 1.256 | 1.103 | 1.194 | IL-10 | IL-10 | Yes |
| 48 | 1.218 | 0.979 | 1.280 | 1.103 | 1.200 | IL-10 | IL-10 | Yes |

#### 4.3 Sensing data for RAW 264.7 cells exposed to conditioned media

Table S7. Normalized fluorescence responses and LDA output of RAW 264.7 cells under cancer cell conditioned media stimulation. Score (1) and score (2) correspond to Fig. 5 in the main text.

|         |         |         | LDA o | utput |            |           |           |
|---------|---------|---------|-------|-------|------------|-----------|-----------|
| Sample  | Pyrene  | Pyrene  | EGFP  | FRET  | Pyrene     | Score (1) | Score (2) |
| name    | monomer | excimer |       |       | minor peak |           |           |
| HeLa-CM | 1.080   | 0.752   | 1.206 | 0.876 | 1.018      | 6.314     | 2.256     |
| HeLa-CM | 1.099   | 0.787   | 1.184 | 0.877 | 1.047      | 5.478     | 0.342     |
| HeLa-CM | 1.124   | 0.791   | 1.211 | 0.893 | 1.077      | 6.063     | 0.278     |
| HeLa-CM | 1.109   | 0.801   | 1.189 | 0.908 | 1.048      | 6.881     | 0.706     |
| HeLa-CM | 1.174   | 0.832   | 1.225 | 0.924 | 1.129      | 7.694     | -0.819    |
| HeLa-CM | 1.223   | 0.843   | 1.387 | 1.039 | 1.188      | 7.215     | 2.446     |
| HeLa-CM | 1.096   | 0.759   | 1.232 | 0.833 | 1.035      | 6.799     | 2.325     |
| HeLa-CM | 1.132   | 0.780   | 1.201 | 0.895 | 1.097      | 5.402     | -0.672    |
| Control | 1.052   | 0.777   | 1.233 | 0.841 | 1.051      | -4.339    | 0.176     |
| Control | 1.078   | 0.782   | 1.280 | 0.869 | 1.079      | -3.590    | 0.889     |
| Control | 1.087   | 0.810   | 1.315 | 0.883 | 1.102      | -6.042    | 0.775     |
| Control | 1.099   | 0.821   | 1.398 | 0.870 | 1.117      | -7.009    | 2.537     |
| Control | 1.120   | 0.837   | 1.362 | 0.896 | 1.157      | -8.006    | 0.025     |
| Control | 1.131   | 0.830   | 1.382 | 0.879 | 1.159      | -6.211    | 0.787     |
| Control | 1.126   | 0.842   | 1.386 | 0.854 | 1.145      | -5.772    | 1.240     |
| Control | 1.142   | 0.858   | 1.475 | 0.720 | 1.158      | -5.935    | 2.856     |
| MCF7-CM | 1.072   | 0.769   | 1.139 | 0.874 | 1.068      | -1.381    | -2.570    |
| MCF7-CM | 1.072   | 0.764   | 1.152 | 0.856 | 1.062      | -0.526    | -1.922    |
| MCF7-CM | 1.102   | 0.810   | 1.176 | 0.915 | 1.091      | -0.059    | -2.066    |
| MCF7-CM | 1.088   | 0.808   | 1.201 | 0.905 | 1.080      | -1.796    | -1.256    |
| MCF7-CM | 1.110   | 0.789   | 1.201 | 0.895 | 1.106      | -0.152    | -1.782    |
| MCF7-CM | 1.128   | 0.819   | 1.219 | 0.922 | 1.128      | -0.533    | -2.065    |
| MCF7-CM | 1.146   | 0.841   | 1.242 | 0.928 | 1.145      | -0.210    | -1.975    |
| MCF7-CM | 1.139   | 0.836   | 1.218 | 0.923 | 1.139      | -0.284    | -2.511    |

 Table S8. Percentage of accurate classification of RAW 264.7 cells exposed to cancer cell conditioned media using Jackknifed analysis.

 The results show an overall 100% correct classification.

|         | Control | HeLa-CM | MCF7-CM | % correct |
|---------|---------|---------|---------|-----------|
| Control | 8       | 0       | 0       | 100       |
| Hela-CM | 0       | 8       | 0       | 100       |
| MCF7-CM | 0       | 0       | 8       | 100       |
| Total   | 8       | 8       | 8       | 100       |

Table S9. Prediction of macrophage polarization state of RAW 264.7 cells cultured in cancer cell conditioned media. Training set is from Fig. 5 and Table S7. The results show an overall 96% correct unknown identification.

|          |         |         | l/lo  |       |            |         |            |            |
|----------|---------|---------|-------|-------|------------|---------|------------|------------|
| Unknown  | Pyrene  | Pyrene  | EGFP  | FRET  | Pyrene     | True ID | Identified | Correct    |
| sample # | monomer | excimer |       |       | minor peak |         | as         | prediction |
| 1        | 1.077   | 0.763   | 1.121 | 0.847 | 1.039      | Hela-CM | Hela-CM    | Yes        |
| 2        | 1.104   | 0.736   | 1.203 | 0.822 | 1.048      | Hela-CM | Hela-CM    | Yes        |
| 3        | 1.136   | 0.818   | 1.247 | 0.920 | 1.099      | Hela-CM | Hela-CM    | Yes        |
| 4        | 1.172   | 0.805   | 1.333 | 0.938 | 1.148      | Hela-CM | Hela-CM    | Yes        |
| 5        | 0.992   | 0.735   | 1.155 | 0.787 | 0.985      | Control | Control    | Yes        |
| 6        | 1.013   | 0.733   | 1.184 | 0.755 | 1.020      | Control | Control    | Yes        |
| 7        | 1.038   | 0.767   | 1.194 | 0.797 | 1.055      | Control | Control    | Yes        |
| 8        | 1.043   | 0.765   | 1.249 | 0.783 | 1.054      | Control | Control    | Yes        |
| 9        | 1.059   | 0.802   | 1.243 | 0.812 | 1.071      | Control | Control    | Yes        |
| 10       | 1.070   | 0.791   | 1.275 | 0.802 | 1.094      | Control | Control    | Yes        |
| 11       | 1.090   | 0.843   | 1.361 | 0.841 | 1.136      | Control | Control    | Yes        |
| 12       | 1.114   | 0.819   | 1.316 | 0.889 | 1.146      | Control | Control    | Yes        |
| 13       | 1.102   | 0.839   | 1.299 | 0.886 | 1.140      | Control | Control    | Yes        |
| 14       | 1.122   | 0.834   | 1.351 | 0.891 | 1.155      | Control | Control    | Yes        |
| 15       | 1.053   | 0.763   | 1.138 | 0.842 | 1.041      | MCF7-CM | MCF7-CM    | Yes        |
| 16       | 1.072   | 0.780   | 1.144 | 0.845 | 1.069      | MCF7-CM | MCF7-CM    | Yes        |
| 17       | 1.078   | 0.780   | 1.167 | 0.852 | 1.060      | MCF7-CM | MCF7-CM    | Yes        |
| 18       | 1.125   | 0.807   | 1.219 | 0.920 | 1.120      | MCF7-CM | MCF7-CM    | Yes        |
| 19       | 1.097   | 0.798   | 1.217 | 0.858 | 1.105      | MCF7-CM | MCF7-CM    | Yes        |
| 20       | 1.105   | 0.827   | 1.227 | 0.908 | 1.122      | MCF7-CM | Control    | No         |
| 21       | 1.146   | 0.846   | 1.242 | 0.942 | 1.154      | MCF7-CM | MCF7-CM    | Yes        |
| 22       | 1.145   | 0.860   | 1.247 | 0.949 | 1.149      | MCF7-CM | MCF7-CM    | Yes        |
| 23       | 1.157   | 0.885   | 1.237 | 0.993 | 1.181      | MCF7-CM | MCF7-CM    | Yes        |
| 24       | 1.166   | 0.899   | 1.250 | 1.002 | 1.162      | MCF7-CM | MCF7-CM    | Yes        |

#### References

(1) R. F. Landis, A. Gupta, Y. W. Lee, L. S. Wang, B. Golba, B. Couillaud, R. Ridolfo, R. Das and V. M. Rotello, ACS Nano, 2017, **11**, 946–952.