Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information (ESI)

Synthesis of *N*-Aryl Amines Enabled by Photocatalytic Dehydrogenation

Jungwon Kim,^{1,*} Siin Kim,^{1,2,3} Geunho Choi,¹ Geun Seok Lee,¹ Donghyeok Kim,^{1,2,3} Jungkweon Choi,^{1,2,3} Hyotcherl Ihee^{1,2,3,*} and Soon Hyeok Hong^{1,*}

¹Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea ²KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea ³Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea

Table of Contents

- 1. General Information (S2)
- 2. Substrate Preparation (S2)
- 3. Screening Experiments (S12)
- 4. General Procedure for the Synthesis of *N*-Aryl Amines (B) (S15)
- 5. Characterization of N-aryl Amines (B) (S15)
- 6. CV Experiments (S21)
- 7. Observation of C₆F₅H in NMR Spectra (S26)
- 8. Stern-Volmer Quenching Experiments (S29)
- 9. Control Experiments with Deuterated Species (S31)
- 10. DFT Calculation (S37)
- 11. Trials to Trap the Diene Intermediate (A1-diene) (S56)
- 12. Reaction with in situ Generated Imine Intermediate (A1-imine) (S57)
- 13. Experiments for the Detection of Halogen Bonding in the Reaction (S58)
- 14. Experiments for the Detection of Electron Donor-Acceptor (EDA) Complexation (S59)
- 15. Quantum Yield Measurement (S61)
- 16. References (S63)
- 17. NMR Spectra (S65)

1. General Information

Unless otherwise noted, all reactions were performed under inert conditions. All reagents and solvents, unless otherwise noted, were purchased from commercial suppliers and used as received without further purification. All anhydrous solvents were purchased from commercial suppliers and degassed with dry argon before usage. All photocatalytic reactions were conducted under irradiation by 34 W blue LED lamps purchased from Kessil (Kessil H150 Blue), 2.5 cm away from the reaction vial with fan cooling. Reactions were monitored by thin-layer chromatography (TLC) on EMD Silica Gel 60 F254 plates and visualized using either UV light (254 nm) or by staining with potassium permanganate and heating. Gas chromatography (GC) was carried out using a 7980A GC system (Agilent Technologies) equipped with an HP-5 column and a flame ionization detector (FID). Nuclear magnetic resonance (NMR) spectra were recorded in CDCl₃ or DMSO-d₆ on a Bruker DPX-300 (300 MHz) spectrometer, Bruker AVANCE 300 (300 MHz), Bruker AVANCE 400 (400 MHz), Bruker AVANCE III HD (400 MHz), Varian 400 (400 MHz) and Varian 500 (500 MHz), and the residue solvent signal was used as a reference. Chemical shifts were reported in ppm and coupling constants in Hz. Multiplicity was indicated by one or more of the following: s (singlet); brs (broad singlet); d (doublet); t (triplet); q (quartet); quint (quintet); h (hexet); hept (heptet); m (multiplet). Stern-Volmer quenching experiment and quantum yield measurement were conducted via a Photon Technology International (PTI) QM-400 spectrofluorometer with FelixGX software and a Shimadzu UV-2600 spectrophotometer. Cyclic voltammetry was measured using an CHI 750E. We thank Organic Chemistry Research Center of Sogang University for HRMS-ESI analysis, KAIST Analysis Center for Research Advancement (KARA) for emission spectra measurement, and Professor Sungwoo Hong's laboratory for UV-Vis absorption spectroscopy measurement.

2. Substrate Preparation

2.1. Synthesis of Secondary Allyl Amines with 3-Bromocyclohexene

To a stirred solution of an amine (5.4 mmol, 2.7 equiv) and potassium carbonate (290 mg, 2.1 mmol, 1.05 equiv) in acetonitrile (6 mL) was added 3-bromocyclohexene (230 μ L, 2.0 mmol, 1.0 equiv), and the mixture was stirred at room temperature for 2 h. The reaction mixture was diluted with ethyl acetate (20 mL) and washed with saturated aqueous NaHCO₃ solution (50 mL) and brine (50 mL). The resulting organic layer was further dried (MgSO₄), filtered, and concentrated in vacuo. The crude mixture was purified by silica gel flash column chromatography (acetone:hexane) to acquire the desired amine **A**.

N-benzylcyclohex-2-en-1-amine (A1)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.29 (m, 4H), 7.23 (t, *J* = 7.1 Hz, 1H), 5.81 – 5.71 (m, 2H), 3.91 – 3.79 (m, 2H), 3.23 (s, 1H), 2.06 – 1.97 (m, 2H), 1.96 – 1.86 (m, 1H), 1.80 – 1.68 (m, 1H), 1.63 – 1.45 (m, 2H). Identity was confirmed by comparison with the literature.¹

N-(4-methoxybenzyl)cyclohex-2-en-1-amine (A2)

Yellow oil. ¹H NMR (499 MHz, CDCl₃) δ 7.27 (d, J = 9.0 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 5.80 - 5.70 (m, 2H), 3.79 (s, 3H), 3.78 (q, J = 12.7 Hz, 2H), 3.24 - 3.18 (m, 1H), 2.04 - 1.96 (m, 2H), 1.93 - 1.86 (m, 1H), 1.80 - 1.70 (m, 1H), 1.61 - 1.45 (m, 2H). Identity was confirmed by comparison with the literature.¹

N-(4-chlorobenzyl)cyclohex-2-en-1-amine (A3)

Red-brown oil. ¹H NMR (499 MHz, CDCl₃) δ 7.32 – 7.26 (m, 4H), 5.83 – 5.64 (m, 2H), 3.82 (q, *J* = 13.6 Hz, 2H), 3.22 – 3.16 (m, 1H), 2.07 – 1.92 (m, 2H), 1.92 – 1.82 (m, 1H), 1.79 – 1.69 (m, 1H), 1.61 – 1.42 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 139.3, 132.5,

129.8, 129.5, 129.2, 128.5, 52.4, 50.2, 29.5, 25.3, 20.2; HRMS-ESI (m/z) $[M+H]^+$ calcd. for $C_{13}H_{17}CIN$, 221.1044; found: 221.1046.

N-(4-bromobenzyl)cyclohex-2-en-1-amine (A4)

Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.45 (d, *J* = 8.4 Hz, 2H), 7.28 – 7.22 (m, 2H), 7.22 – 7.13 (m, 2H), 6.76 (d, *J* = 7.4 Hz, 1H), 6.64 (d, J = 8.2 Hz, 2H), 4.30 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 139.7, 131.2, 129.7, 128.9, 120.4, 52.2, 50.1, 29.3, 25.2, 20.1;

HRMS-ESI (m/z) [M+H]⁺ calcd. for C₁₃H₁₇BrN, 266.0539; found: 221.0542.

Methyl 4-((cyclohex-2-en-1-ylamino)methyl)benzoate (A5)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.6 Hz, 2H), 7.39 (d, *J* = 7.7 Hz, 2H), 5.79 – 5.64 (m, 2H), 3.94 – 3.79 (m, 5H), 3.16 (s, 1H), 2.04 – 1.90 (m, 2H), 1.90 – 1.79 (m, 1H), 1.79 – 1.66 (m, 1H), 1.59 – 1.40 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 146.2, 129.7, 129.7, 129.2, 128.7, 128.0, 52.5, 52.0, 50.6, 29.4, 25.3, 20.2;

HRMS-ESI (m/z) [M+H]⁺ calcd. for C₁₅H₂₀NO₂, 246.1489; found: 246.1491.

N-(4-(trifluoromethyl)benzyl)cyclohex-2-en-1-amine (A6)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.1 Hz, 2H), 7.48 (d, *J* = 8.1 Hz, 2H), 5.84 – 5.67 (m, 2H), 3.91 (q, *J* = 14.2 Hz, 2H), 3.25 – 3.14 (m, 1H), 2.10 – 1.95 (m, 2H), 1.95 – 1.83 (m, 1H), 1.83 – 1.70 (m, 1H), 1.63 – 1.44 (m, 2H); ¹³C NMR (101 MHz, 1.20 6, 1.20 5,

CDCl₃) δ 144.9, 129.6, 129.5, 129.3 (d, *J* = 32.6 Hz), 128.5, 125.4 (q, *J* = 3.7 Hz), 124.4 (q, *J* = 271.8 Hz), 52.6, 50.5, 29.5, 25.4, 20.2; ¹⁹F NMR (376 MHz, CDCl₃) δ –62.5; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₁₄H₁₇F₃N, 256.1308; found: 256.1310.

N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)cyclohex-2-en-1-amine (A7)

Yellow oil. ¹H NMR (499 MHz, CDCl₃) δ 7.77 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 7.7 Hz, 2H), 5.83 – 5.70 (m, 2H), 3.88 (q, *J* = 13.5 Hz, 2H), 3.22 (s, 1H), 2.04 – 1.93 (m, 2H), 1.93 – 1.85 (m, 1H), 1.80 – 1.70 (m, 1H), 1.58 – 1.48 (m, 2H), 1.33 (s, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 135.0, 129.8, 129.3, 127.7, 83.8, 75.1, 52.4, 51.0,

29.5, 25.4, 25.0, 20.3; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₁₉H₂₉BNO₂, 314.2289; found: 314.2288.

N-(3-bromobenzyl)cyclohex-2-en-1-amine (A8)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1H), 7.40 (d, *J* = 7.9 Hz, 1H), 7.31 (d, *J* = 7.5 Hz, 1H), 7.20 (t, *J* = 7.7 Hz, 1H), 5.87 – 5.72 (m, 2H), 3.85 (q, *J* = 13.0 Hz, 2H), 3.27 – 3.18 (m, 1H), 2.11 – 1.96 (m, 2H), 1.96 – 1.86 (m, 1H), 1.85 – 1.73 (m, 1H), 1.65 –

1.44 (m, 2H), 1.36 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 131.1, 129.9, 129.7, 129.2, 126.7, 122.5, 52.4, 50.3, 29.4, 25.3, 20.2; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₁₃H₁₇BrN, 266.0539; found: 266.0539.

N-(benzo[*d*][1,3]dioxol-5-ylmethyl)cyclohex-2-en-1-amine (A9)

ST N

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.87 (s, 1H), 6.82 – 6.68 (m, 2H), 5.92 (s, 2H), 5.80 – 5.67 (m, 2H), 3.75 (q, *J* = 13.0 Hz, 2H), 3.23 – 3.14 (m, 1H), 2.07 – 1.92 (m, 2H), 1.93 – 1.82 (m, 1H), 1.81 – 1.68 (m, 1H), 1.62 – 1.41 (m, 2H); ¹³C NMR (101 MHz,

CDCl₃) δ 147.8, 146.5, 134.7, 129.8, 129.2, 121.3, 108.9, 108.1, 100.9, 52.3, 50.8, 29.5, 25.4, 20.3; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₁₄H₁₈NO₂, 232.1332; found: 232.1333.

N-(thiophen-2-ylmethyl)cyclohex-2-en-1-amine (A10)

Light brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.20 (dd, *J* = 4.3, 2.0 Hz, 1H), 6.99 – 6.91 (m, 2H), 5.82 – 5.69 (m, 2H), 4.06 (q, *J* = 13.6 Hz, 2H), 3.30 – 3.23 (m, 1H), 2.05 – 1.95 (m, 2H), 1.95 – 1.86 (m, 1H), 1.80 – 1.70 (m, 2H), 1.61 – 1.45 (m, 2H); ¹³C NMR (101 MHz,

CDCl₃) δ 144.5, 129.5, 128.8, 126.3, 124.3, 124.0, 51.8, 45.3, 29.1, 25.1, 20.0; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₁₁H₁₆NS, 194.0998; found: 194.1000.

N-(pyridin-3-ylmethyl)cyclohex-2-en-1-amine (A11)

Brown oil. ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.49 – 8.45 (m, 1H), 7.73 (d, *J* = 7.8 Hz, 1H), 7.24 (dd, *J* = 7.8, 4.8 Hz, 1H), 5.82 – 5.76 (m, 1H), 5.73 – 5.67 (m, 1H), 3.85 (q, *J* = 13.1 Hz, 2H), 3.24 – 3.18 (m, 1H), 2.26 (s, 1H), 2.03 – 1.95 (m, 2H), 1.95 – 1.85 (m, 1H), 1.79 – 1.68 (m, 1H), 1.60 – 1.43 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 149.8, 148.5, 136.2, 135.8, 129.9, 129.2, 123.5, 52.5, 48.1, 29.2, 25.3, 20.2; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₁₂H₁₇N₂, 189.1386; found: 189.1389.

N-(1-phenylethyl)cyclohex-2-en-1-amine (A12)

Yellow oil. Diastereomeric mixture (1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.36 – 7.24 (m, 8H), 7.24 – 7.16 (m, 2H), 5.85 – 5.69 (m, 2H), 5.69 – 5.51 (m, 2H), 3.98 (dq, *J* = 11.3, 6.6 Hz, 2H), 3.02 – 2.91 (m, 2H), 1.99 – 1.88 (m, 4H), 1.88 – 1.58 (m, 4H), 1.51 – 1.37 (m, 4H), 1.33 (d, *J* = 1.7 Hz, 3H), 1.30 (d, *J* = 1.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.1, 145.8, 130.8, 129.7, 128.5, 128.3, 128.3, 126.7, 126.6, 126.6, 55.0, 54.7, 50.2, 49.8, 30.6, 29.0, 25.3, 25.3, 25.1, 24.8, 20.5, 19.9; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₁₄H₂₀N, 202.1590; found: 202.1592.

N-phenethylcyclohex-2-en-1-amine (A13)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.28 (m, 2H), 7.28 – 7.17 (m, 3H), 5.78 (d, *J* = 10.1 Hz, 1H), 5.70 (d, *J* = 10.4 Hz, 1H), 3.27 – 3.15 (m, 1H), 3.02 – 2.89 (m, 2H), 2.85 (t, *J* = 7.2 Hz, 2H), 2.07 – 1.95 (m, 2H), 1.95 – 1.83 (m, 1H), 1.80 – 1.64 (m, 1H),

 $1.64 - 1.49 (m, 1H), 1.49 - 1.36 (m, 1H); {}^{13}C NMR (101 MHz, CDCl_3) \delta 140.1, 129.8, 128.9, 128.7, 128.4, 126.1, 52.9, 48.2, 36.7, 29.4, 25.3, 20.3; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₁₄H₂₀N, 202.1590; found: 202.1591.$

N-octylcyclohex-2-en-1-amine (A14)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 5.80 – 5.65 (m, 2H), 3.20 – 3.10 (m, 1H), 2.64 (td, J = 7.3, 2.9 Hz, 2H), 2.02 – 1.94 (m, 2H), 1.93 – 1.83 (m, 1H), 1.77 – 1.67 (m, 1H), 1.58 – 1.39 (m, 4H), 1.27 (d, J = 6.8 Hz, 10H), 0.87 (t, J = 6.7 Hz, 3H). Identity was confirmed by comparison with the literature.¹

N-cyclohexylcyclohex-2-en-1-amine (A15)

Colorless oil. ¹H NMR (499 MHz, CDCl₃) δ 5.77 – 5.66 (m, 2H), 3.29 (s, 1H), 2.64 – 2.56 (m, 1H), 2.05 – 1.92 (m, 2H), 1.89 – 1.81 (m, 3H), 1.76 – 1.67 (m, 3H), 1.65 – 1.58 (m, 1H), 1.58 - 1.50 (m, 1H), 1.45 - 1.36 (m, 1H), 1.30 - 1.21 (m, 2H), 1.17 - 1.02 (m, 3H). Identity was confirmed by comparison with the literature.²

N-(cyclohex-2-en-1-yl)adamantan-1-amine (A16)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 5.67 (d, J = 10.0 Hz, 1H), 5.59 (d, J = 9.9 Hz, 1H), 3.34 (s, 1H), 2.06 (s, 3H), 2.00 – 1.84 (m, 2H), 1.84 – 1.50 (m, 16H), 1.45 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 133.2, 127.5, 51.1, 44.8, 43.7, 36.7, 33.5, 29.7, 24.9, 20.5; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₁₆H₂₆N, 232.2060; found: 232.2063.

N-(cyclohex-2-en-1-yl)-1,2,3,4-tetrahydronaphthalen-1-amine (A22)

Yellow oil. Diastereomeric mixture (1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.40 – 7.27 (m, 2H), 7.21 - 7.01 (m, 6H), 5.92 - 5.78 (m, 2H), 5.78 - 5.61 (m, 2H), 3.93 (dt, J = 10.1, 4.6 Hz, 2H), 3.43 -3.31 (m, 2H), 2.84 – 2.62 (m, 4H), 2.04 – 1.46 (m, 20H), 1.22 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 139.9, 137.3, 137.3, 133.2, 130.9, 130.0, 129.0, 128.9, 128.7, 128.6, 128.3, 127.1, 126.5,

126.5, 126.4, 125.7, 52.6, 52.2, 50.7, 50.0, 39.1, 31.2, 29.6, 29.4, 29.3, 29.2, 28.6, 25.4, 20.5, 19.7, 18.8, 18.7; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₁₆H₂₂N, 228.1747; found: 228.1746.

N-(((1R,4aS,10aR)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1yl)methyl)cyclohex-2-en-1-amine (A30)

Colorless sticky oil. Diastereomeric mixture. ¹H NMR (300 MHz, CDCl₃) δ 7.21 (d, J = 8.2 Hz, 1H), 7.01 (d, J = 7.9 Hz, 1H), 6.91 (s, 1H), 5.80 - 5.62 (m, 2H), 3.08 (s, 1H), 2.94 – 2.78 (m, 3H), 2.61 (dd, J = 11.8, 7.2 Hz, 1H), 2.38 – 2.23 (m, 2H), 2.04 - 1.93 (m, 2H), 1.88 - 1.64 (m, 7H), 1.64 - 1.50 (m, 2H), 1.50 - 1.35 (m, 4H), 1.25 (d, J = 6.9 Hz, 6H), 1.24 (s, 3H), 0.94 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.8, 145.5, 135.0, 130.7, 128.7, 126.9, 124.5, 123.9, 77.5, 77.2, 76.8, 58.7, 58.6, 54.0, 45.3, 45.0, 38.7, 37.6, 37.5, 37.1, 37.1, 36.2, 36.2, 33.6, 30.5, 29.8, 29.6, 25.5, 25.5, 24.1, 20.3, 20.3, 19.6, 19.4, 19.0, 19.0, 18.9; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₂₆H₄₀N, 366.3155; found: 366.3158.

Methyl cyclohex-2-en-1-yl-*L*-phenylalaninate (A31)

Yellow green oil. Diastereomeric mixture (1:1). ¹H NMR (400 MHz, CD₂Cl₂) δ 7.34 – 7.15 (m, 10H), 5.78 – 5.68 (m, 2H), 5.59 (d, J = 10.0 Hz, 1H), 5.52 (d, J = 9.8 Hz, 1H), 3.70 – 3.62 (m, 5H), 3.61 (s, 3H), 3.12 - 3.03 (m, 2H), 2.98 - 2.84 (m, 4H), 2.04 - 1.84 (m, 4H), 1.76 – 1.68 (m, 2H), 1.62 – 1.57 (m, 2H), 1.55 – 1.40 (m, 2H), 1.39 – 1.23 (m, 2H); ¹³C

NMR (101 MHz, CD₂Cl₂) δ 175.9, 175.8, 138.3, 138.2, 130.1, 129.7, 129.6, 129.6, 129.1, 128.6, 128.6,

126.9, 126.9, 61.0, 60.8, 52.3, 51.8, 51.8, 51.8, 40.6, 40.6, 30.5, 29.4, 25.6, 25.6, 20.5, 19.9; HRMS-ESI (m/z) $[M+H]^+$ calcd. for $C_{16}H_{22}NO_2$, 260.1645; found: 260.1648.

(1R,2R,3R,5S)-N-(cyclohex-2-en-1-yl)-2,6,6-trimethylbicyclo[3.1.1]heptan-3-amine (A32)

Brown oil. Diastereomeric mixture (1:1). ¹H NMR (400 MHz, CD_2CI_2) δ 5.80 – 5.68 (m, 3H), 5.68 – 5.60 (m, 1H), 3.29 – 3.23 (m, 1H), 3.23 – 3.17 (m, 1H), 3.04 (tt, *J* = 10.4, 5.8 Hz, 2H), 2.41 – 2.26 (m, 4H), 2.07 – 1.90 (m, 6H), 1.90 – 1.81 (m, 2H), 1.81 – 1.76 (m, 2H), 1.76 – 1.66 (m, 4H), 1.61 – 1.50 (m, 4H), 1.46 – 1.37 (m, 2H), 1.21 (s, 6H), 1.08 (d, *J* = 7.3 Hz, 6H), 0.98 (s, 6H), 0.95 (dd, *J* = 9.4, 5.9 Hz, 2H); ¹³C NMR (101 MHz, CD_2CI_2) δ 131.6, 130.5, 128.7, 128.4, 53.7, 53.3, 50.9, 50.0, 48.5, 48.4, 46.1, 46.0, 42.5, 39.0, 39.0, 37.9, 37.4, 34.3, 34.1, 31.4, 29.3, 28.2, 28.1, 25.9, 25.9, 23.6, 23.6, 21.5, 21.4, 21.1, 20.3; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₁₆H₂₈N, 234.2216; found: 234.2219.

N-(1-(2,6-dimethylphenoxy)propan-2-yl)cyclohex-2-en-1-amine (A34)

Yellow oil. Diastereomeric mixture (1:1). ¹H NMR (400 MHz, C_6D_6) δ 6.98 – 6.84 (m, 6H), 5.89 – 5.79 (m, 2H), 5.74 – 5.64 (m, 2H), 3.56 (ddd, *J* = 10.5, 8.8, 6.8 Hz, 2H), 3.47 (dd, *J* = 9.1, 4.9 Hz, 2H), 3.33 – 3.17 (m, 4H), 2.25 (s, 12H), 1.92 – 1.73 (m, 6H), 1.72 – 1.58 (m, 2H), 1.52 – 1.36 (m, 4H), 1.30 (s, 2H), 1.07 (d, *J* = 6.4 Hz, 3H), 1.03 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (101 MHz, C_6D_6) δ 156.4, 131.8, 131.0, 131.0, 130.8, 129.3, 124.1, 77.1, 76.7, 50.7, 50.5, 50.3, 50.2, 31.3, 29.9, 25.7, 25.7, 20.5, 20.3, 18.6, 17.8, 16.5; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₁₇H₂₆N, 260.2009; found: 260.2013.

N-(cyclohex-2-en-1-yl)aniline (A37)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (t, *J* = 7.3 Hz, 2H), 6.78 – 6.62 (m, 3H), 5.91 – 5.81 (m, 1H), 5.76 (d, *J* = 10.2 Hz, 1H), 4.00 (s, 1H), 2.13 – 2.00 (m, 2H), 1.99 – 1.84 (m, 1H), 1.81 – 1.56 (m, 3H). Identity was confirmed by comparison with the literature.³

N-(cyclohex-2-en-1-yl)-2,6-dimethylaniline (A38)

Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 6.99 (d, J = 7.5 Hz, 2H), 6.81 (t, J = 7.5 Hz, 1H), 5.84 – 5.67 (m, 2H), 3.69 (s, 1H), 2.29 (s, 6H), 2.13 – 1.97 (m, 2H), 1.97 – 1.83 (m, 1H), 1.83 – 1.69 (m, 1H), 1.69 – 1.46 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 145.1, 130.4, 129.1, 128.9,

128.8, 121.4, 52.4, 30.6, 25.3, 20.4, 19.1; HRMS-ESI (m/z) $[M+H]^+$ calcd. for $C_{14}H_{20}N,$ 202.1590; found: 202.1591.

2-(tert-Butyl)-N-(cyclohex-2-en-1-yl)aniline (A39)

Yellow oil. 1H NMR (400 MHz, CDCl₃) δ 7.26 (dd, J = 7.8, 1.6 Hz, 2H), 7.16 – 7.10 (m, 1H), 6.78 (d, J = 7.9 Hz, 1H), 6.70 (t, J = 7.4 Hz, 1H), 5.93 – 5.85 (m, 1H), 5.83 – 5.73 (m, 1H), 4.11 (s, 1H), 2.15 – 2.02 (m, 2H), 2.02 – 1.91 (m, 1H), 1.80 – 1.60 (m, 3H), 1.42 (s, 9H).

Identity was confirmed by comparison with the literature.³

2.2. Synthesis of Tertiary Allyl Amines with 3-Bromocyclohexene

To a stirred solution of a amine (2.4 mmol, 1.2 equiv) and potassium carbonate (290 mg, 2.1 mmol, 1.05 equiv) in acetonitrile (6 mL) was added 3-bromocyclohexene (230 μ L, 2.0 mmol, 1.0 equiv), and the mixture was stirred at room temperature for 2 h. The reaction mixture was diluted with ethyl acetate (20 mL) and washed with saturated aqueous NaHCO₃ solution (50 mL) and brine (50 mL). The resulting organic layer was further dried (MgSO₄), filtered, and concentrated in vacuo. The crude mixture was purified by silica gel flash column chromatography (acetone:hexane) to aquire the desired amine **A**.

N-benzyl-N-methylcyclohex-2-en-1-amine (A17)

N

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.31 (m, 4H), 7.28 (t, *J* = 6.4 Hz, 1H), 5.93 – 5.84 (m, 1H), 5.80 (d, *J* = 10.2 Hz, 1H), 3.72 (d, *J* = 13.3 Hz, 1H), 3.53 (d, *J* = 13.3 Hz, 1H), 3.47 – 3.38 (m, 1H), 2.28 (s, 3H), 2.13 – 1.97 (m, 2H), 1.97 – 1.83 (m, 2H), 1.68 – 1.55 (m,

2H). Identity was confirmed by comparison with the literature.⁴

N-benzyl-N-isopropylcyclohex-2-en-1-amine (A18)

Yellow oil. ¹H NMR (499 MHz, CDCl₃) δ 7.38 (d, *J* = 7.5 Hz, 2H), 7.28 (t, *J* = 7.5 Hz, 2H), 7.19 (t, *J* = 7.3 Hz, 1H), 5.78 – 5.73 (m, 1H), 5.68 (d, *J* = 10.3 Hz, 1H), 3.70 (q, *J* = 15.2 Hz, 2H), 3.47 – 3.40 (m, 1H), 2.98 (hept, *J* = 6.5 Hz, 1H), 1.99 – 1.91 (m, 2H), 1.88 – 1.81 (m, 74 (m, 1H)), 1.55 – 1.49 (m, 2H), 1.04 (t, *J* = 5.9 Hz, 6H), Identity was confirmed by

1H), 1.81 – 1.74 (m, 1H), 1.55 – 1.49 (m, 2H), 1.04 (t, J = 5.9 Hz, 6H). Identity was confirmed by comparison with the literature.⁵

N,N-dibenzylcyclohex-2-en-1-amine (A19)

White solid. ¹H NMR (499 MHz, CDCl₃) δ 7.40 (d, J = 7.7 Hz, 4H), 7.29 (t, J = 7.5 Hz, 4H), 7.20 (t, J = 7.2 Hz, 2H), 5.85 – 5.79 (m, 1H), 5.74 (d, J = 10.3 Hz, 1H), 3.73 (d, J = 14.0 Hz, 2H), 3.54 (d, J = 14.0 Hz, 2H), 3.37 – 3.31 (m, 1H), 1.98 – 1.89 (m, 3H), 1.83 – 1.75 (m, 1H), 1.56 – 1.41 (m, 2H). Identity was confirmed by comparison with the literature.⁶

N,N-dibutylcyclohex-2-en-1-amine (A20)

Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 5.85 – 5.71 (m, 1H), 5.62 (d, *J* = 8.7 Hz, 1H), 3.46 – 3.27 (m, 1H), 2.56 – 2.28 (m, 4H), 2.08 – 1.91 (m, 2H), 1.88 – 1.71 (m, 2H), 1.55 – 1.23 (m, 11H), 0.90 (t, *J* = 7.2 Hz, 6H). Identity was confirmed by comparison with the

literature.²

N-benzyl-*N*-(cyclohex-2-en-1-yl)-1,2,3,4-tetrahydronaphthalen-1-amine (A23)

Light yellow oil. Diastereomeric mixture (1.4:1). ¹H NMR (400 MHz, C_6D_6) δ 8.09 (d, J = 7.8 Hz, 1H), 8.06 (d, J = 7.8 Hz, 1.4H), 7.50 (d, J = 7.5 Hz, 2.8H), 7.46 (d, J = 7.5 Hz, 2H), 7.27 - 7.16 (m, 7H), 7.14 - 7.01 (m, 5H), 6.96 (s, 1H), 6.92 (d, J = 7.9 Hz, 1.4H), 5.90 (d, J

= 10.2 Hz, 1H), 5.86 (d, J = 10.3 Hz, 1.4H), 5.76 – 5.68 (m, 2.4H), 4.00 (dd, J = 10.3, 5.1 Hz, 1H), 3.93 – 3.64 (m, 6.2H), 3.54 – 3.46 (m, 1H), 3.45 – 3.37 (m, 1.4H), 2.66 – 2.55 (m, 2.4H), 2.51 – 2.39 (m, 2.4H), 2.09 – 2.00 (m, 1.4H), 1.98 – 1.89 (m, 2.4H), 1.86 – 1.66 (m, 8.2H), 1.63 – 1.46 (m, 7.2H), 1.36 – 1.18 (m, 4.8H); ¹³C NMR (101 MHz, C₆D₆) δ 142.4, 141.7, 140.5, 140.2, 138.7, 138.7, 133.9, 131.7, 130.0, 129.8, 129.2, 129.1, 129.0, 128.8, 128.6, 128.5, 128.4, 127.1, 126.5, 126.2, 126.1, 58.5, 57.2, 54.1, 53.7, 50.7, 50.6, 30.5, 30.4, 30.3, 27.3, 27.3, 25.4, 25.4, 22.9, 22.8, 22.7, 22.3; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₂₃H₂₈N, 318.2216; found: 318.2217.

(*1S*,*4S*)-*N*-(cyclohex-2-en-1-yl)-4-(3,4-dichlorophenyl)-*N*-methyl-1,2,3,4-tetrahydronaphthalen-1-amine (**A33**)

Opaque sticky oil. Diastereomeric mixture (1:1). ¹H NMR (400 MHz, C₆D₆) δ 7.87 (dd, *J* = 12.2, 7.8 Hz, 2H), 7.20 – 7.15 (m, 2H), 7.10 (t, *J* = 2.5 Hz, 2H), 7.05 – 6.99 (m, 2H), 6.97 (dd, *J* = 8.3, 3.3 Hz, 2H), 6.75 (d, *J* = 7.5 Hz, 2H), 6.54 (ddd, *J* = 8.2, 4.4, 2.1 Hz, 2H), 5.82 – 5.70 (m, 4H), 3.84 (dt, *J* = 9.7, 5.1 Hz, 2H), 3.73 (q, *J* = 4.1

Hz, 2H), 3.40 - 3.34 (m, 1H), 3.34 - 3.27 (m, 1H), 2.20 (s, 3H), 2.17 (s, 3H), 1.89 - 1.61 (m, 15H), 1.56 - 1.37 (m, 5H); ¹³C NMR (101 MHz, C_6D_6) δ 148.4, 140.6, 140.5, 138.6, 138.6, 132.6, 132.2, 131.6, 131.2, 131.2, 130.6, 130.5, 130.3, 130.2, 130.2, 129.8, 129.7, 129.3, 129.1, 128.6, 128.6, 127.2, 127.1, 127.1, 60.9, 60.3, 57.7, 57.5, 44.0, 44.0, 33.0, 32.3, 30.2, 30.1, 27.2, 27.1, 25.6, 25.6, 22.0, 21.8, 21.0, 20.7; HRMS-ESI (m/z) [M+H]⁺ calcd. for $C_{23}H_{26}Cl_2N$, 386.1437; found: 386.1439.

2.3. Synthesis of Allyl Amines with 6-Bromo-1-phenylcyclohexene

To a stirred solution of an amine (5.4 mmol, 2.7 equiv) and potassium carbonate (290 mg, 2.1 mmol, 1.05 equiv) in acetonitrile (6 mL) was added 6-bromo-1-phenylcyclohexene (474 mg, 2.0 mmol, 1.0 equiv), and the mixture was stirred at room temperature for 4 h. The reaction mixture was diluted with ethyl acetate (20 mL) and washed with saturated aqueous NaHCO₃ solution (50 mL) and brine (50 mL). The resulting organic layer was further dried (MgSO₄), filtered, and concentrated in vacuo. The crude mixture was purified by silica gel flash column chromatography (acetone:hexane) to acquire the desired amine **A**.

N-benzyl-2,3,4,5-tetrahydro-[1,1'-biphenyl]-2-amine (A25)

Yellow oil. ¹H NMR (499 MHz, CDCl₃) δ 7.31 – 7.28 (m, 5H), 7.27 – 7.20 (m, 3H), 7.20 – 7.16 (m, 2H), 6.10 (t, *J* = 3.8 Hz, 1H), 3.82 (d, *J* = 13.2 Hz, 1H), 3.79 (s, 1H), 3.72 (d, *J* = 13.2 Hz, 1H), 2.30 – 2.13 (m, 2H), 2.09 – 2.00 (m, 1H), 1.86 (d, *J* = 12.9 Hz, 1H), 1.79 (d, *J* = 11.6 Hz, 1H), 1.70 – 1.61 (m, 1H). Identity was confirmed by comparison with the

literature.7

N-(1-(2,6-dimethylphenoxy)propan-2-yl)-2,3,4,5-tetrahydro-[1,1'-biphenyl]-2-amine (A36)

Brown oil. Diastereomeric mixture (1:1). ¹H NMR (300 MHz, CD_2Cl_2) δ 7.48 – 7.37 (m, 4H), 7.35 – 7.14 (m, 6H), 6.99 – 6.93 (m, 4H), 6.90 – 6.82 (m, 2H), 6.03 (t, *J* = 3.8 Hz, 1H), 5.99 (t, *J* = 4.0 Hz, 1H), 3.90 – 3.82 (m, 2H), 3.69 – 3.56 (m, 2H), 3.50 (dd, *J* = 8.7, 5.3 Hz, 1H), 3.38 (dd, *J* = 8.8, 6.2 Hz, 1H), 3.28 – 3.09 (m, 2H), 2.20 (s, 6H), 2.15 (s, 6H),

2.08 – 1.95 (m, 2H), 1.85 – 1.37 (m, 12H), 1.13 (d, J = 6.4 Hz, 3H), 1.09 (d, J = 6.3 Hz, 3H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 156.3, 156.3, 142.5, 140.8, 140.6, 131.2, 131.2, 129.1, 128.6, 128.4, 128.3, 127.1, 127.0, 126.8, 126.7, 124.0, 124.0, 77.5, 76.7, 52.0, 51.8, 50.8, 50.3, 29.4, 27.7, 26.6, 19.8, 17.5, 17.3, 17.2, 16.5; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₂₃H₃₀NO, 336.2322; found: 336.2322.

2.4. Synthesis of Allyl Amines with Cyclohexenones

A modified procedure reported by K. Taniguchi and co-workers was applied.⁸ To a stirred solution of the amine (10.0 mmol, 5.0 equiv) and the enone (2.0 mmol, 1.0 equiv) was added the 1.0 M solution of TiCl₄ (4 mL, 4.0 mmol, 2.0 equiv) dropwise at -78 °C for 30 min., and the resulting solution was further stirred for 2 h at the same temperature. Sodium borohydride (303 mg, 8.0 mmol, 4.0 equiv) was added, and the reaction mixture was further stirred for 2.5 h at -78 °C. Methanol (9 mL) was added dropwise for 30 min., and the resulting mixture was further stirred for 2.5 h at -78 °C and 2 h at room temperature. After the reaction was complete, a mixture of ethyl acetate (10 mL) and a saturated aqueous NaHCO₃ (10 mL) was added and further stirred for 30 min. at rt. The generated solid was removed via filtration, and the resulting organic layer was further washed with brine (50 mL), dried (MgSO₄), filtered, and concentrated in vacuo. The crude mixture was purified by silica gel flash column chromatography (acetone:hexane) to afford the desired amine **A**.

N-benzyl-3-butylcyclohex-2-en-1-amine (A26)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 7.2 Hz, 2H), 7.32 (t, *J* = 7.4 Hz, 2H), 7.23 (t, *J* = 7.2 Hz, 1H), 5.45 (s, 1H), 3.86 (q, *J* = 13.2 Hz, 2H), 3.25 (s, 1H), 1.99 – 1.90 (m, 4H), 1.89 – 1.83 (m, 1H), 1.82 – 1.74 (m, 1H), 1.58 – 1.42 (m, 2H), 1.42 – 1.33 (m, 2H), 1.32 – 1.23 (m, 2H), 0.89 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 140.8, 140.5, 128.4, 128.2, 126.8, 123.5, 52.8, 51.0, 37.5, 29.8, 29.4, 28.6, 22.5, 20.6, 14.0;HRMS-ESI (m/z) [M+H]⁺ calcd. for C₁₇H₂₆N, 244.2060; found: 244.2062.

N-benzyl-3,4,5,6-tetrahydro-[1,1'-biphenyl]-3-amine (A27)

Dark blue oil. ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.32 (m, 10H), 6.28 (s, 1H), 4.04 (dd, *J* = 2923.8, 12.7 Hz, 2H), 3.58 – 3.50 (m, 1H), 2.63 – 2.44 (m, 2H), 2.16 – 2.02 (m, 2H), 1.97 – 1.81 (m, 2H), 1.73 – 1.61 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 141.9,

140.6, 138.4, 128.3, 128.1, 128.1, 127.0, 126.8, 125.2, 53.1, 50.9, 29.1, 27.6, 20.7;HRMS-ESI (m/z) [M+H]⁺ calcd. for $C_{19}H_{22}N$, 264.1747; found: 264.1750.

3-Butyl-*N*-(1-(2,6-dimethylphenoxy)propan-2-yl)cyclohex-2-en-1-amine (A35)

Yellow oil. ¹H NMR (300 MHz, C_6D_6) δ 6.97 – 6.85 (m, 3H), 5.68 – 5.60 (m, 1H), 3.64 – 3.55 (m, 1H), 3.55 – 3.46 (m, 1H), 3.39 – 3.22 (m, 2H), 2.26 (s, 6H), 1.94 (t, *J* = 7.4 Hz, 2H), 1.87 – 1.67 (m, 4H), 1.56 – 1.45 (m, 2H), 1.40 – 1.22 (m, 5H), 1.11 (d, *J* = 6.4 Hz, 3H), 0.88 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, C_6D_6) δ 156.5, 139.7, 131.0, 129.3, 124.7, 124.1, 76.8, 50.9, 50.4, 37.9, 31.4, 30.3, 29.0, 22.8, 20.8, 18.8, 16.6, 14.3; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₂₁H₃₄NO, 316.2635; found: 316.2636.

Following amines were synthesized from the newly synthesized enones, which were prepared by the previously reported methods.

4-(Ethoxymethyl)cyclohex-2-en-1-one9

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.84 (ddd, *J* = 10.2, 2.6, 1.4 Hz, 1H), 5.91 (dd, *J* = 10.2, 2.5 Hz, 1H), 3.45 – 3.37 (m, 2H), 3.37 – 3.27 (m, 2H), 2.65 – 2.53 (m, 1H), 2.40 (dt, *J* = 16.7, 4.7 Hz, 1H), 2.34 – 2.19 (m, 1H), 2.05 – 1.95 (m, 1H), 1.74 – 1.59 (m, 1H), 1.14 – 1.03 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 199.5, 151.8, 129.7, 72.7, 66.5, 36.8, 36.6, 25.7, 15.0; HRMS-ESI (m/z) [M+Na]⁺ calcd. for C₉H₁₄NaO₂, 177.0886; found: 177.0885.

N-benzyl-4-(ethoxymethyl)cyclohex-2-en-1-amine (A28)

Yellow oil. Diastereomeric mixture. ¹H NMR (300 MHz, CDCl₃) δ 7.45 – 7.22 (m, 5H), 5.89 – 5.67 (m, 2H), 3.93 – 3.77 (m, 2H), 3.47 (q, *J* = 7.0 Hz, 2H), 3.38 – 3.18 (m, 3H), 2.49 – 2.29 (m, 1H), 2.14 – 2.02 (m, 1H), 1.97 – 1.84 (m, 1H), 1.77 – 1.24 (m, 3H), 1.19 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 140.4, 130.9, 130.7, 130.0, 130.0, 128.2, 128.0, 128.0, 126.7, 74.7, 73.9, 66.2, 53.1, 51.7, 51.0, 50.6, 36.4, 35.8, 29.0, 26.3, 24.8, 24.6, 22.1, 15.1, 15.0; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₁₆H₂₄NO, 246.1852; found: 246.1855.

3-(*m*-Tolylthio)cyclohex-2-en-1-one¹⁰

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (t, *J* = 5.3 Hz, 3H), 7.28 – 7.20 (m, 2H), 5.53 – 5.44 (m, 1H), 2.52 (t, *J* = 6.0 Hz, 2H), 2.36 (d, *J* = 6.3 Hz, 5H), 2.04 (p, *J* = 5.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 196.3, 167.4, 140.0, 136.1, 132.6, 131.1, 129.8, 127.7, 120.9, 37.4, 30.3, 23.1, 21.3; HRMS-ESI (m/z) [M+Na]⁺ calcd. for C₁₃H₁₄NaOS, 241.0658; found: 241.0659

N-benzyl-3-(*m*-tolylthio)cyclohex-2-en-1-amine (A29)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.27 (m, 5H), 7.21 – 7.15 (m, 3H), 7.07 (d, *J* = 7.1 Hz, 1H), 5.90 (s, 1H), 3.85 (s, 2H), 3.35 (s, 1H), 2.33 (s, 3H), 2.20 – 2.04 (m, 2H), 1.98 – 1.79 (m, 2H), 1.64 – 1.49 (m, 2H); ¹³C NMR (101 MHz, CDCl₃)

 $\delta \ 140.5, \ 138.8, \ 135.2, \ 133.5, \ 132.4, \ 131.3, \ 128.9, \ 128.8, \ 128.5, \ 128.2, \ 128.0, \ 127.0, \ 53.7, \ 51.0, \ 30.1, \ 29.0, \ 21.4, \ 21.2; \ HRMS-ESI \ (m/z) \ [M+H]^+ \ calcd. \ for \ C_{20}H_{24}NS, \ 310.1624; \ found: \ 310.1626.$

2.5 Synthesis of Allyl Amines via Transition-Metal Catalysis

Amine **A21** was synthesized by the reaction between morpholine and 1,3-cyclohexadiene following the reported procedure.²

4-(Cyclohex-2-en-1-yl)morpholine (A21)

Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 5.89 – 5.78 (m, 1H), 5.65 (d, *J* = 10.2 Hz, 1H), 3.72 (t, *J* = 4.6 Hz, 4H), 3.17 (s, 1H), 2.68 – 2.49 (m, 4H), 1.99 (d, *J* = 13.0 Hz, 2H), 1.78 (dt, *J* = 8.9, 4.5 Hz, 2H), 1.63 – 1.46 (m, 2H). Identity was confirmed by comparison with the literature.²

Amine **A24** was synthesized by the reaction between benzylamine and 2-methylcyclohex-2-en-1-yl acetate following the reported procedure.¹¹

N-benzyl-2-methylcyclohex-2-en-1-amine (A24)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 7.2 Hz, 2H), 7.32 (t, J = 7.5 Hz, 2H), 7.25 (t, J = 8.6 Hz, 1H), 5.51 (s, 1H), 3.90 (d, J = 13.2 Hz, 1H), 3.74 (d, J = 13.2 Hz, 1H), 3.03 (s, 1H), 2.06 – 1.86 (m, 3H), 1.84 – 1.77 (m, 1H), 1.74 (s, 3H), 1.65 (dt, J = 12.1, 5.3 Hz, 2H), 1.57 – 1.50 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 141.3, 135.6, 128.4, 128.3, 126.9, 124.8, 55.4, 51.4, 27.9, 25.6, 21.6, 18.7; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₁₄H₂₀N, 202.1590; found: 202.1590.

2.6. Synthesis of Tertiary Allyl Amines with Secondary Allyl Amines via Methylation

To a stirred solution of an amine (1.0 mmol, 1.0 equiv) and potassium carbonate (145 mg, 1.05 mmol, 1.05 equiv) in acetonitrile (3 mL) was added methyl iodide (311 μ L, 5.0 mmol, 5.0 equiv), and the mixture was stirred at 40 °C for 24 h. The reaction mixture was diluted with ethyl acetate (20 mL) and washed with saturated aqueous NaHCO₃ solution (50 mL) and brine (50 mL). The resulting organic layer was further dried (MgSO₄), filtered, and concentrated in vacuo. The crude mixture was purified by silica gel flash column chromatography (CH₂Cl₂:hexane) to acquire the desired amine **A**.

N-(cyclohex-2-en-1-yl)-*N*-methylaniline (A37-Me)

Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.29 – 7.17 (m, 2H), 6.81 (d, *J* = 8.1 Hz, 2H), 6.71 (t, *J* = 7.2 Hz, 1H), 5.99 – 5.84 (m, 1H), 5.64 (d, *J* = 10.3 Hz, 1H), 4.52 – 4.39 (m, 1H), 2.80 (s, 3H), 2.13 – 1.97 (m, 2H), 1.95 – 1.78 (m, 2H), 1.78 – 1.53 (m, 2H). Identity was confirmed by comparison with the literature.³

N-(cyclohex-2-en-1-yl)-N,2,6-trimethylaniline (A38-Me)

Colorless oil. 1H NMR (300 MHz, CDCl₃) δ 7.13 – 6.88 (m, 3H), 5.88 – 5.65 (m, 2H), 3.67 (s, 1H), 2.80 (s, 3H), 2.32 (s, 6H), 2.08 – 1.97 (m, 2H), 1.90 – 1.80 (m, 1H), 1.79 – 1.69 (m, 2H),

 $1.66 - 1.45 \text{ (m, 1H)}; {}^{13}\text{C} \text{ NMR}$ (101 MHz, CDCl₃) δ 149.3, 137.7, 137.5, 130.4, 129.5, 129.0, 128.8, 124.6, 57.6, 36.4, 27.8, 25.3, 21.2, 20.1, 19.9; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₁₅H₂₂N, 216.1747; found: 216.1746.

2-(*tert*-Butyl)-*N*-(cyclohex-2-en-1-yl)-*N*-methylaniline (A39-Me)

3. Screening Experiments

An oven-dried 4 mL reaction vial equipped with a PTFE-coated stir bar was charged with photocatalyst, base, and solvent in a glovebox. The vial was closed with a Teflon-lined septum cap and taken out of the glovebox. Amine **A1** (18.8 mg, 0.1 mmol, 1.0 equiv) and perfluoroarene were added via a gas-tight syringe, and the solution was stirred for 24 h under 34 W blue LED irradiation with fan cooling. After the reaction was complete, dodecane (22.7 μ L, 0.1 mmol, 1.0 equiv) was added, and the result was analyzed by GC.

Table S1 Screening of the photocatalyst

Photocatalyst	Yield B1 (GC)
lr(ppy)₃	18%
[Ir(dFCF ₃ ppy) ₂ (dtbbpy)](PF ₆)	22%
3DPAFIPN (6 mol%)	24%
4CzTPN	18%
4CzPN	22%
Ru(bpy) ₃ Cl ₂	22%

Table S2 Screening of the perfluoroarene

Ph	N H	3DPAFIPN perfluoroaren CH ₃ CN (0.1 34 W b	Ph N H		
	A1 0.1 mmol			B1	
	Perfluoroarene	Yield B1 (GC)	Perfluoroarene	Yield B1 (GC)	
	C ₆ F₅I	19%	$C_6F_5NO_2$	2%	
	C_6F_5CI	0	C_6F_5N	2%	
	C_6F_5Br	0	C ₆ F ₅ C(O)Cl	0	
	C_6F_6	3%	$C_6F_5SO_2CI$	0	
	C_6F_5H	2%	$C_6F_5B(OH)_2$	0	
	C_6F_5CN	0			

Table S3 Screening of the solvent

Solvent	Yield B1 (GC)	Solvent	Yield B1 (GC)
CH₃CN	22%	1,4-Dioxane	15%
CH ₂ Cl ₂	32%	C_6F_6	12%
THF	19%	EtOAc	15%
DMA	9%	CH_3NO_2	6%
Benzene	18%	MTBE	15%
Ether	15%	H ₂ O	3%
1,2-DCE	29%	CH₃OH	4%
CHCl₃	15%	Acetone	16%
Chlorobenzene	16%	DMSO	6%

Table S4 Screening of the base

		3DPAFIPN (6 C ₆ F ₅ I (3.0 6 Base (2.0 6			
Ph N H		Solvent (0.1 M), rt, 24 h 34 W blue LED		Ph N H	
	A1 0.1 mmol			B1	
	Base	Yield B1 (GC)	Base	Yield B1 (GC)	
	None	32%	2,6-Lutidine	51%	
	NaOAc	39%	2,2'-Bipyidyl	29%	
	NaOH	20%	4,4'-Bipyridyl	26%	
	K ₂ CO ₃	67%	Na_2CO_3	56%	
	K ₃ PO ₄	26%	Cs ₂ CO ₃	68%	
	Pyridine	30%	Li ₂ CO ₃	24%	
	3-Chloropyridine	29%	Rb_2CO_3	63%	

Table S5 Screening of the concentration and the equivalence of the reagents

0.2 mmol

Х	Y	Ζ	V	Yield B1 (GC)
6.0	3.0	2.0	0.1	83%
6.0	3.0	2.0	0.2	82%
3.0	3.0	2.0	0.2	85%
6.0	3.0	3.0	0.2	85%
9.0	3.0	2.0	0.2	72%
6.0	4.0	2.0	0.2	85%
9.0	4.0	2.0	0.2	89%
6.0	4.0	3.0	0.2	95%
3.0	4.0	3.0	0.2	84%

4. General Procedure for the Synthesis of N-Aryl Amines (B)

An oven-dried 4 mL reaction vial equipped with a PTFE-coated stir bar was charged with 3DPAFIPN (7.8 mg, 0.012 mmol, 6 mol%), potassium carbonate (82.9 mg, 0.6 mmol, 3.0 equiv), amine **A** (if solid, 0.2 mmol, 1.0 equiv), and CH_2Cl_2 (1 mL) in a glovebox. The vial was closed with a Teflon-lined septum cap and taken out of the glovebox. Amine **A** (if liquid, 0.2 mmol, 1.0 equiv) and iodopentafluorobenzene (107 μ L, 0.8 mmol, 4.0 equiv) were added via a gas-tight syringe, and the solution was stirred for the indicated time under 34 W blue LED irradiation with fan cooling. After the reaction was complete, the mixture was directly loaded onto the silica gel and further purified by silica gel flash column chromatography (ether:hexane) to afford the corresponding *N*-aryl amine **B**.

5. Characterization of N-Aryl Amines (B)

N-benzylaniline (B1)

Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.43 – 7.26 (m, 5H), 7.21 (t, *J* = 7.9 Hz, 2H), 6.75 (t, *J* = 7.3 Hz, 1H), 6.67 (d, *J* = 8.5 Hz, 2H), 4.36 (s, 2H), 4.17 (s, 1H). Identity was confirmed by comparison with the literature.¹²

N-(4-methoxybenzyl)aniline (B2)

Yellow oil. ¹H NMR (499 MHz, CDCl₃) δ 7.32 (d, *J* = 8.4 Hz, 2H), 7.21 (t, *J* = 7.8 Hz, 2H), 6.92 (d, *J* = 8.5 Hz, 2H), 6.75 (t, *J* = 7.2 Hz, 1H), 6.67 (d, *J* = 7.8 Hz, 2H), 4.28 (s, 2H), 4.01 (s, 1H), 3.83 (s, 3H). Identity was confirmed by comparison with the literature.¹²

N-(4-chlorobenzyl)aniline (B3)

Yellow oil. ¹H NMR (499 MHz, CDCl₃) δ 7.35 – 7.28 (m, 4H), 7.24 – 7.15 (m, 2H), 6.76 (t, *J* = 7.1 Hz, 1H), 6.63 (d, *J* = 7.6 Hz, 2H), 4.32 (s, 2H), 4.08 (s, 1H). Identity was confirmed by comparison with the literature.¹²

N-(4-bromobenzyl)aniline (B4)

Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.45 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 7.4 Hz, 2H), 7.22 – 7.13 (m, 2H), 6.76 (d, *J* = 14.5 Hz, 1H), 6.64 (d, *J* = 8.2 Hz, 2H), 4.30 (s, 2H). Identity was confirmed by comparison with the literature.¹²

Methyl 4-((phenylamino)methyl)benzoate (B5)

Colorless oil. ¹H NMR (499 MHz, CDCl₃) δ 8.01 (d, *J* = 8.3 Hz, 2H), 7.44 (d, *J* = 8.2 Hz, 2H), 7.17 (td, *J* = 7.4, 1.9 Hz, 2H), 6.74 (t, *J* = 7.3 Hz, 1H), 6.62 (d, *J* = 7.7 Hz, 2H), 4.41 (s, 2H), 4.21 (s, 1H), 3.91 (s, 3H). Identity was confirmed by comparison with the literature.¹³

N-(4-(trifluoromethyl)benzyl)aniline (**B6**)

Colorless oil. ¹H NMR (499 MHz, CDCl₃) δ 7.62 (d, *J* = 7.7 Hz, 2H), 7.50 (d, *J* = 7.8 Hz, 2H), 7.20 (t, *J* = 7.8 Hz, 2H), 6.77 (t, *J* = 7.1 Hz, 1H), 6.63 (d, *J* = 7.7 Hz, 2H), 4.43 (s, 2H), 4.16 (s, 1H). Identity was confirmed by comparison with the literature.¹³

N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)aniline (B7)

Yellow oil. ¹H NMR (499 MHz, CDCl₃) δ 7.81 (d, *J* = 7.0 Hz, 2H), 7.40 (d, *J* = 7.3 Hz, 2H), 7.18 (t, *J* = 7.1 Hz, 2H), 6.73 (t, *J* = 7.2 Hz, 1H), 6.64 (d, *J* = 8.0 Hz, 2H), 4.36 (s, 2H), 4.16 (s, 1H), 1.36 (s, 12H). Identity was confirmed by comparison with the literature.¹²

N-(3-bromobenzyl)aniline (B8)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 1H), 7.41 (d, *J* = 8.1 Hz, 1H), 7.35 – 7.28 (m, 1H), 7.23 – 7.14 (m, 3H), 6.76 (tt, *J* = 7.3, 1.0 Hz, 1H), 6.67 – 6.58 (m, 2H), 4.33 (s, 2H). Identity was confirmed by comparison with the literature.¹⁴

N-(benzo[d][1,3]dioxol-5-ylmethyl)aniline (B9)

White solid. ¹H NMR (499 MHz, CDCl₃) δ 7.19 (t, *J* = 7.9 Hz, 2H), 6.87 (d, *J* = 1.3 Hz, 1H), 6.83 (d, *J* = 7.9 Hz, 1H), 6.79 – 6.74 (m, 2H), 6.68 (d, *J* = 8.0 Hz, 2H), 5.94 (s, 2H), 4.24 (s, 2H). Identity was confirmed by comparison with the literature.¹⁵

N-(thiophen-2-ylmethyl)aniline (B10)

Yellow oil. ¹H NMR (499 MHz, CDCl₃) δ 7.24 – 7.17 (m, 3H), 7.05 – 7.01 (m, 1H), 7.01 – 6.95 (m, 1H), 6.77 (t, *J* = 7.2 Hz, 1H), 6.69 (d, *J* = 7.8 Hz, 2H), 4.52 (s, 2H), 4.12 (s, 1H). Identity was confirmed by comparison with the literature.¹²

N-(pyridin-3-ylmethyl)aniline (B11)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.64 (s, 1H), 8.53 (d, *J* = 4.3 Hz, 1H), 7.71 (d, *J* = 7.7 Hz, 1H), 7.28 (dd, *J* = 7.8, 4.7 Hz, 1H), 7.18 (t, *J* = 7.9 Hz, 2H), 6.74 (t, *J* = 7.3 Hz, 1H), 6.63 (d, *J* = 7.8 Hz, 2H), 4.37 (s, 2H). Identity was confirmed by comparison with the

literature.¹⁶

N-(1-phenylethyl)aniline (B12)

Yellow oil. ¹H NMR (499 MHz, CDCl₃) δ 7.37 (d, *J* = 7.2 Hz, 2H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.23 (t, *J* = 7.3 Hz, 1H), 7.10 (td, *J* = 7.4, 1.9 Hz, 2H), 6.68 (t, *J* = 7.1 Hz, 1H), 6.56 (d, *J* = 7.4 Hz, 2H), 4.49 (q, *J* = 6.7 Hz, 1H), 1.54 (d, *J* = 6.7 Hz, 3H). Identity was confirmed by

comparison with the literature.¹⁷

N-phenethylaniline (B13)

Colorless oil. ¹H NMR (499 MHz, CDCl₃) δ 7.39 – 7.32 (m, 2H), 7.31 – 7.24 (m, 3H), 7.24 – 7.17 (m, 2H), 6.75 (t, *J* = 7.3 Hz, 1H), 6.65 (d, *J* = 7.5 Hz, 2H), 3.66 (s, 1H), 3.44 (t, *J* = 7.0 Hz, 2H), 2.95 (t, *J* = 7.0 Hz, 2H). Identity was confirmed by comparison with the

literature.13

N-octylaniline (B14)

Yellow oil. ¹H NMR (499 MHz, CDCl₃) δ 7.19 (t, *J* = 7.6 Hz, 2H), 6.74 (t, *J* = 7.3 Hz, 1H), 6.68 (d, *J* = 8.0 Hz, 2H), 3.11 (t, *J* = 7.2 Hz, 2H), 1.63 (p, *J* = 7.3 Hz, 2H), 1.41 – 1.36 (m, 2H), 1.32 – 1.27 (m, 8H), 0.88 (t, *J* = 6.9 Hz, 3H). Identity was confirmed

by comparison with the literature.¹⁶

N-cyclohexylaniline (B15)

Colorless oil. ¹H NMR (499 MHz, CDCl₃) δ 7.17 (t, *J* = 7.9 Hz, 2H), 6.67 (t, *J* = 7.3 Hz, 1H), 6.60 (d, *J* = 7.8 Hz, 2H), 3.52 (s, 1H), 3.31 – 3.22 (m, 1H), 2.07 (d, *J* = 12.6 Hz, 2H), 1.81 – 1.73 (m, 2H), 1.69 – 1.61 (m, 1H), 1.39 (q, *J* = 11.9 Hz, 2H), 1.28 – 1.22 (m, 1H), 1.21 – 1.10

(m, 2H). Identity was confirmed by comparison the literature.¹⁸

N-phenyladamantan-1-amine (B16)

White solid. ¹H NMR (499 MHz, CDCl₃) δ 7.16 (t, *J* = 7.8 Hz, 2H), 6.90 – 6.76 (m, 3H), 2.10 (s, 3H), 1.88 (s, 6H), 1.70 – 1.64 (m, 6H). Identity was confirmed by comparison with the literature.¹⁹

N-benzyl-N-methylaniline (B17)

Yellow oil. ¹H NMR (499 MHz, CDCl₃) δ 7.41 – 7.34 (m, 2H), 7.34 – 7.22 (m, 5H), 6.88 – 6.75 (m, 3H), 4.60 (s, 2H), 3.08 (s, 3H). Identity was confirmed by comparison with the literature.²⁰

N-benzyl-N-isopropylaniline (B18)

Yellow oil. ¹H NMR (499 MHz, CDCl₃) δ 7.38 – 7.29 (m, 4H), 7.29 – 7.21 (m, 1H), 7.19 (t, J = 7.9 Hz, 2H), 6.73 (d, J = 8.2 Hz, 2H), 6.69 (t, J = 7.2 Hz, 1H), 4.44 (s, 2H), 4.30 (p, J = 6.6 Hz, 1H), 1.23 (d, J = 6.6 Hz, 6H). Identity was confirmed by comparison with the

literature.²⁰

N,N-dibenzylaniline (B19)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.32 (m, 4H), 7.31 – 7.26 (m, 6H), 7.20 (dd, *J* = 8.8, 7.3 Hz, 2H), 6.78 (d, *J* = 8.2 Hz, 2H), 6.74 (t, *J* = 7.2 Hz, 1H), 4.69 (s, 4H). Identity was confirmed by comparison with the literature.²¹

N,*N*-dibutylaniline (**B20**)

Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.20 (t, *J* = 7.9 Hz, 2H), 6.64 (d, *J* = 8.3 Hz, 2H), 6.62 (t, *J* = 7.5 Hz, 1H), 3.26 (d, *J* = 7.6 Hz, 4H), 1.64 – 1.51 (m, 4H), 1.40 – 1.30 (m, 4H), 0.95 (t, *J* = 7.3 Hz, 6H). Identity was confirmed by comparison with the literature.²⁰

4-Phenylmorpholine (B21)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 7.00 – 6.86 (m, 3H), 3.88 (t, J = 4.4 Hz, 4H), 3.17 (t, J = 4.5 Hz, 4H). Identity was confirmed by comparison with the literature.²⁰

N-Phenyl-1,2,3,4-tetrahydronaphthalen-1-amine (**B22**)

Light yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.41 (d, *J* = 7.4 Hz, 1H), 7.24 – 7.11 (m, 5H), 6.77 – 6.66 (m, 3H), 4.65 (t, *J* = 4.4 Hz, 1H), 3.93 (s, 1H), 2.86 (dt, *J* = 16.2, 5.3 Hz, 1H), 2.78 (dt, *J* = 16.2, 6.9 Hz, 1H), 2.07 – 1.96 (m, 2H), 1.96 – 1.87 (m, 1H), 1.86 – 1.77 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 147.6, 138.3, 137.8, 129.5, 129.4, 129.2, 127.3, 126.2, 117.2, 112.9, 51.1, 29.5, 28.9, 19.5; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₁₆H₁₈N, 224.1434; found: 224.1434.

N-benzyl-*N*-phenyl-1,2,3,4-tetrahydronaphthalen-1-amine (**B23**)

Beige solid. ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.05 (m, 11H), 6.80 (d, *J* = 8.4 Hz, 2H), 6.71 (t, *J* = 7.2 Hz, 1H), 5.28 (t, *J* = 7.4 Hz, 1H), 4.34 (d, *J* = 18.1 Hz, 2H), 2.87 – 2.72 (m, 2H), 2.24 – 2.08 (m, 1H), 2.06 – 1.91 (m, 1H), 1.82 (d, *J* = 7.1 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 149.8, 140.1, 138.8, 137.5, 129.4, 129.3, 128.5, 127.5, 127.0, 126.6, 126.6, 126.2, 117.0, 113.7, 58.7, 51.5, 29.6, 29.2, 22.7; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₂₃H₂₄N, 314.1903; found: 314.1907.

N-benzyl-2-methylaniline (B24)

Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.45 – 7.18 (m, 5H), 7.17 – 7.06 (m, 2H), 6.71 (t, *J* = 7.3 Hz, 1H), 6.65 (d, *J* = 7.9 Hz, 1H), 4.40 (s, 2H), 2.19 (s, 3H). Identity was confirmed by comparison with the literature.²²

N-benzyl-[1,1'-biphenyl]-2-amine (**B25**)

Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.53 – 7.42 (m, 4H), 7.40 – 7.29 (m, 5H), 7.29 – 7.24 (m, 1H), 7.24 – 7.17 (m, 1H), 7.14 (dd, *J* = 7.4, 1.5 Hz, 1H), 6.80 (dd, *J* = 7.3, 0.7 Hz, 1H), 6.69 (d, *J* = 8.1 Hz, 1H), 4.50 (s, 1H), 4.35 (s, 2H). Identity was confirmed by comparison with the literature.²²

N-benzyl-3-butylaniline (B26)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.31 (m, 4H), 7.31 – 7.26 (m, 1H), 7.09 (dd, *J* = 8.7, 7.5 Hz, 1H), 6.60 (d, *J* = 7.4 Hz, 1H), 6.54 – 6.49 (m, 2H), 4.33 (s, 2H), 2.56 – 2.48 (m, 2H), 1.61 – 1.50 (m, 2H), 1.33 (t, *J* = 7.2 Hz, 2H), 0.91 (t, *J* = 7.3 Hz, 3H); ¹³C

NMR (101 MHz, CDCl₃) δ 147.2, 144.3, 138.9, 129.3, 128.8, 128.0, 127.5, 118.8, 113.9, 110.9, 49.1, 35.9, 33.7, 22.6, 14.1; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₁₇H₂₂N, 240.1747; found: 240.1749.

N-benzyl-[1,1'-biphenyl]-3-amine (B27)

Brown solid. ¹H NMR (600 MHz, CDCl₃) δ 7.55 (d, *J* = 7.7 Hz, 2H), 7.44 – 7.39 (m, 4H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.4 Hz, 1H), 7.29 (t, *J* = 7.3 Hz, 1H), 7.27 – 7.23 (m, 1H), 6.98 (d, *J* = 7.6 Hz, 1H), 6.89 (s, 1H), 6.69 – 6.64 (m, 1H), 4.40 (s, 2H); ¹³C NMR

(101 MHz, CDCl₃) δ 148.1, 142.6, 141.7, 139.1, 129.8, 128.8, 128.8, 127.9, 127.5, 127.3, 127.3, 117.3, 112.4, 112.3, 48.9; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₁₉H₁₈N, 260.1434; found: 260.1437.

N-benzyl-4-(ethoxymethyl)aniline (B28)

Yellow oil. ¹H NMR (499 MHz, CDCl₃) δ 7.39 – 7.31 (m, 4H), 7.28 (d, *J* = 6.9 Hz, 1H), 7.16 (d, *J* = 8.5 Hz, 2H), 6.64 (dd, *J* = 8.4, 2.2 Hz, 2H), 4.39 (s, 2H), 4.34 (s, 2H), 3.50 (q, *J* = 7.0 Hz, 2H), 1.22 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.7, 139.4,

129.6, 128.7, 127.6, 127.3, 112.9, 72.8, 65.2, 48.4, 15.4; HRMS-ESI (m/z) $[M+H]^+$ calcd. for $C_{16}H_{20}NO$, 242.1539; found: 242.1544.

N-benzyl-3-(*m*-tolylthio)aniline(**B29**)

Brown oil. ¹H NMR (499 MHz, CDCl₃) δ 7.36 – 7.27 (m, 5H), 7.20 – 7.06 (m, 5H), 6.80 (d, *J* = 7.3 Hz, 1H), 6.77 (s, 1H), 6.74 – 6.67 (m, 1H), 4.27 (s, 2H), 2.32 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 148.5, 139.0, 138.9, 137.0, 135.3, 132.1, 130.0,

129.1, 128.8, 128.5, 128.0, 127.7, 127.5, 120.1, 115.0, 111.8, 48.4, 21.4; HRMS-ESI (m/z) $[M+H]^+$ calcd. for C₂₀H₂₀NS, 306.1311; found: 306.1314.

N-(((*1R*,*4aS*,*10aR*)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-yl)methyl)aniline (**B30**)

Sticky yellow oil. ¹H NMR (400 MHz, CD_2CI_2) δ 7.19 (d, J = 8.2 Hz, 1H), 7.17 – 7.09 (m, 2H), 6.99 (d, J = 8.2 Hz, 1H), 6.90 (s, 1H), 6.67 – 6.57 (m, 3H), 3.70 (s, 1H), 3.07 (d, J = 12.6 Hz, 1H), 2.95 – 2.75 (m, 4H), 2.32 (dt, J = 12.9, 3.3 Hz, 1H), 1.91 – 1.66 (m, 4H), 1.62 (dd, J = 12.0, 2.6 Hz, 1H), 1.53 – 1.34 (m, 3H), 1.25 (s, 3H), 1.23 (s,

3H), 1.21 (s, 3H), 1.03 (s, 3H); ¹³C NMR (101 MHz, CD_2Cl_2) δ 149.6, 147.9, 146.1, 135.3, 129.5, 127.2, 124.6, 124.2, 117.1, 112.9, 55.2, 45.8, 39.0, 37.9, 37.9, 36.6, 33.9, 30.5, 25.5, 24.2, 19.4, 19.3, 19.2; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₂₆H₃₆N, 362.2842; found: 362.2842.

Methyl phenyl-*L*-phenylalaninate (**B31**)

Yellow solid. ¹H NMR (499 MHz, CDCl₃) δ 7.32 – 7.27 (m, 2H), 7.27 – 7.24 (m, 1H), 7.20 – 7.15 (m, 4H), 6.75 (t, *J* = 7.3 Hz, 1H), 6.62 (d, *J* = 7.7 Hz, 2H), 4.37 (t, *J* = 6.3 Hz, 1H), 3.67 (s, 3H), 3.14 (qd, *J* = 13.6, 6.2 Hz, 2H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 173.9, 147.1, 137.0, 129.7, 129.7, 128.9, 127.3, 118.6, 113.8, 58.0, 52.3, 39.0; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₁₆H₁₈NO₂, 256.1332; found: 256.1334.

(1R,2R,3R,5S)-2,6,6-trimethyl-N-phenylbicyclo[3.1.1]heptan-3-amine (B32)

Brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.19 (t, *J* = 7.9 Hz, 2H), 6.76 – 6.60 (m, 3H), 3.69 (dt, *J* = 9.2, 5.9 Hz, 1H), 2.70 – 2.58 (m, 1H), 2.41 (dq, *J* = 10.1, 6.6, 5.7 Hz, 1H), 2.04 – 1.93 (m, 1H), 1.93 – 1.78 (m, 2H), 1.68 (ddd, *J* = 13.9, 5.2, 2.5 Hz, 1H), 1.27 (s, 1H), 1.26 (s, 3H), 1.17 (d, *J* = 7.1 Hz, 3H), 1.07 (s, 3H), 0.99 (d, *J* = 9.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 129.4,

 $(101 \text{ MHz}, \text{CDCl}_3) \circ 129.4$, 117.5, 114.0, 52.7, 47.9, 47.0, 41.9, 38.6, 37.6, 34.5, 28.0, 23.6, 21.5; HRMS-ESI (m/z) [M+H]⁺ calcd. for $C_{16}H_{24}N$, 230.1903; found: 230.1906.

(15,45)-4-(3,4-dichlorophenyl)-N-methyl-N-phenyl-1,2,3,4-tetrahydronaphthalen-1-amine (B33)

Off-white solid. ¹H NMR (400 MHz, CD_2CI_2) δ 7.38 (d, J = 8.3 Hz, 2H), 7.25 (t, J = 7.8 Hz, 3H), 7.21 (d, J = 7.4 Hz, 2H), 7.18 (d, J = 1.8 Hz, 2H), 6.99 (d, J = 7.5 Hz, 1H), 6.93 (dd, J = 8.1, 1.9 Hz, 1H), 6.90 (d, J = 8.6 Hz, 3H), 6.72 (t, J = 7.2 Hz, 1H), 5.15 (dd, J = 9.8, 6.2 Hz, 1H), 4.24 (t, J = 4.6 Hz, 1H), 2.71 (s, 3H), 2.38 – 2.25 (m, 1H),

$$\begin{split} & 2.09-1.95\ (m,\,1H),\, 1.91-1.72\ (m,\,2H);\, ^{13}C\ NMR\ (101\ MHz,\,CD_2Cl_2)\ \delta\ 150.8,\, 148.0,\, 138.7,\, 138.7,\, 132.4,\\ & 131.1,\, 131.0,\, 130.4,\, 130.1,\, 129.6,\, 128.7,\, 128.2,\, 127.6,\, 127.6,\, 116.9,\, 113.1,\, 58.4,\, 43.7,\, 33.4,\, 30.8,\, 21.4;\\ & HRMS\text{-ESI}\ (m/z)\ [M+H]^+\ calcd.\ for\ C_{23}H_{22}Cl_2N,\, 382.1124;\ found:\ 382.1123. \end{split}$$

N-(1-(2,6-dimethylphenoxy)propan-2-yl)aniline (B34)

Dark blue oil. ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.17 (m, 2H), 7.01 (d, *J* = 7.2 Hz, 2H), 6.96 – 6.91 (m, 1H), 6.78 – 6.69 (m, 3H), 3.93 – 3.85 (m, 1H), 3.85 – 3.79 (m, 2H), 2.27 (s, 6H), 1.48 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.3, 146.7, 131.0, 129.5,

129.1, 124.1, 118.0, 114.0, 74.2, 49.2, 18.1, 16.4; HRMS-ESI (m/z) $[M+H]^+$ calcd. for $C_{17}H_{22}NO$, 256.1696; found: 256.1699.

3-Butyl-*N*-(1-(2,6-dimethylphenoxy)propan-2-yl)aniline (B35)

Colorless oil. ¹H NMR (400 MHz, CD_2Cl_2) δ 7.05 (t, *J* = 7.7 Hz, 1H), 6.99 (d, *J* = 7.4 Hz, 2H), 6.90 (dd, *J* = 8.1, 6.8 Hz, 1H), 6.55 - 6.43 (m, 3H), 3.94 (s, 1H), 3.91 - 3.82 (m, 1H), 3.86 - 3.71 (m, 2H), 2.56 - 2.47 (m, 2H), 2.24 (s, 6H), 1.62 - 1.54 (m, 2H), 1.43

(d, J = 6.3 Hz, 3H), 1.40 – 1.30 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 155.8, 147.8, 144.6, 131.3, 129.4, 129.2, 124.2, 118.0, 113.9, 111.1, 74.7, 49.1, 36.2, 34.1, 22.8, 18.4, 16.4, 14.1; HRMS-ESI (m/z) [M+H]⁺ calcd. for C₂₁H₃₀NO, 312.2322; found: 312.2323.

N-(1-(2,6-dimethylphenoxy)propan-2-yl)-[1,1'-biphenyl]-2-amine (**B36**)

Yellow oil. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.46 (d, *J* = 4.3 Hz, 4H), 7.37 (dd, *J* = 8.9, 4.6 Hz, 1H), 7.25 (t, *J* = 7.8 Hz, 1H), 7.11 (d, *J* = 7.4 Hz, 1H), 6.98 (d, *J* = 7.5 Hz, 2H), 6.94 – 6.86 (m, 1H), 6.81 (d, *J* = 8.3 Hz, 1H), 6.77 (dd, *J* = 7.3, 0.8 Hz, 2H), 4.39 (d, *J* = 6.0 Hz, 1H), 3.97 – 3.86 (m, 1H), 3.76 (d, *J* = 4.3 Hz, 2H), 2.14 (s, 6H), 1.39 (d, *J* = 6.5 Hz, 3H);

¹³C NMR (101 MHz, CD₂Cl₂) δ 155.6, 144.6, 140.0, 131.3, 130.8, 129.8, 129.3, 129.2, 129.0, 128.4, 127.6, 124.3, 117.2, 111.2, 74.8, 49.0, 17.9, 16.2; HRMS-ESI (m/z) $[M+H]^+$ calcd. for C₂₃H₂₆NO, 332.2009; found: 332.2010.

N,2,6-trimethyl-N-phenylaniline (B38-Me)

Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.24 – 7.11 (m, 5H), 6.66 (t, *J* = 7.2 Hz, 1H), 6.40 (s, 2H), 3.18 (s, 3H), 2.09 (s, 6H). Identity was confirmed by comparison with the literature.²³

2-(*tert*-Butyl)-*N*-methyl-*N*-phenylaniline (**B39-Me**)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.50 (m, 1H), 7.31 – 7.26 (m, 2H), 7.18 – 7.12 (m, 2H), 7.02 – 6.95 (m, 1H), 6.71 (t, *J* = 7.3 Hz, 1H), 6.49 (d, *J* = 8.0 Hz, 2H), 3.15 (s, 3H), 1.36 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 151.4, 148.8, 148.6, 131.0, 128.6, 128.3, 128.2,

127.2, 117.0, 114.4, 42.2, 35.6, 31.6; HRMS-ESI (m/z) $[M+H]^+$ calcd. for $C_{17}H_{26}N$, 244.2060; found: 244.2057.

6. CV Experiments

6.1. Calibration of the Reference Electrode

<Electrode composition> Working electrode: glassy carbon Reference electrode: Ag wire in AgNO₃ (CH₃CN) Counter electrode: carbon rod

<Procedure>

A solution of Ferrocene (Fc, 0.0010 M) and tetrabutylammonium perchlorate (0.10 M) in acetonitrile (10 mL) was transferred to an electrochemical cell equipped with the above three-electrode systems. The cyclic voltammogram was obtained using CHI 750E with a scan rate of 0.1 V/s and a scan range of -0.34 to 1.0 V.

Measured: $E_{1/2}$ [Fc/Fc⁺] = 0.076 V vs. Ag/Ag⁺ Reference: $E_{1/2}$ [Fc/Fc⁺] = 0.382 V vs. SCE (Saturated Calomel Electrode)²⁴ Conversion constant: +0.306 V

6.2. C₆F₅Br

<Electrode composition> Working electrode: glassy carbon Reference electrode: Ag wire in AgNO₃ (CH₃CN) Counter electrode: carbon rod

<Procedure>

A solution of C_6F_5Br (0.02 M) and tetrabutylammonium perchlorate (0.20 M) in acetonitrile (10 mL) was transferred to an electrochemical cell equipped with the above three-electrode systems. The cyclic voltammogram was obtained using CHI 750E with a scan rate of 0.2 V/s and a scan range of -2.5 to 0 V. Background subtraction was performed with the CV diagram without C_6F_5Br .

The cyclic voltammogram indicates that $E_p^{red} = -1.942 \text{ V} (-1.636 \text{ V} \text{ vs. SCE in CH}_3\text{CN})$.

6.3. C₆F₅I

<Electrode composition> Working electrode: glassy carbon Reference electrode: Ag wire in AgNO₃ (CH₃CN) Counter electrode: carbon rod

<Procedure>

A solution of C_6F_5I (0.02 M) and tetrabutylammonium perchlorate (0.20 M) in acetonitrile (10 mL) was transferred to an electrochemical cell equipped with the above three-electrode systems. The cyclic voltammogram was obtained using CHI 750E with a scan rate of 0.2 V/s and a scan range of -2.0 to 0 V. Background subtraction was performed with the CV diagram without C_6F_5I .

The cyclic voltammogram indicates that $E_p^{red} = -1.665 \text{ V} (-1.359 \text{ V} \text{ vs. SCE in CH}_3\text{CN})$.

6.4. Amine A1

<Electrode composition> Working electrode: glassy carbon Reference electrode: Ag wire in AgNO₃ (CH₃CN) Counter electrode: carbon rod

<Procedure>

A solution of **A1** (0.02 M) and tetrabutylammonium perchlorate (0.20 M) in acetonitrile (10 mL) was transferred to an electrochemical cell equipped with the above three-electrode systems. The cyclic voltammogram was obtained using CHI 750E with a scan rate of 0.2 V/s and a scan range of 0 to 2.0 V. Background subtraction was performed with the CV diagram without **A1**.

The cyclic voltammogram indicates that $E_p^{ox} = 0.985 \text{ V} (1.291 \text{ V vs. SCE in CH}_3\text{CN})$.

6.5. Amine A37

<Electrode composition> Working electrode: glassy carbon Reference electrode: Ag wire in AgNO₃ (CH₃CN) Counter electrode: carbon rod

<Procedure>

A solution of **A37** (0.02 M) and tetrabutylammonium perchlorate (0.20 M) in acetonitrile (10 mL) was transferred to an electrochemical cell equipped with the above three-electrode systems. The cyclic voltammogram was obtained using CHI 750E with a scan rate of 0.2 V/s and a scan range of 0 to 2.0 V. Background subtraction was performed with the CV diagram without **A37**.

The cyclic voltammogram indicates that $E_p^{\text{ox}} = 0.576 \text{ V}$ (0.882 V vs. SCE in CH₃CN).

7. Observation of C₆F₅H in NMR Spectra

7.1. Table 4, entry 1

An oven-dried 4 mL reaction vial equipped with a PTFE-coated stir bar was charged with 3DPAFIPN (7.8 mg, 0.012 mmol, 6 mol%), potassium carbonate (82.9 mg, 0.6 mmol, 3.0 equiv), and CH_2Cl_2 (1 mL) in a glovebox. The vial was closed with a Teflon-lined septum cap and taken out of the glovebox. Amine **A1** (37.5 mg, 0.2 mmol, 1.0 equiv) and iodopentafluorobenzene (107 µL, 0.8 mmol, 4.0 equiv) were added via a gas-tight syringe, and the solution was stirred for the indicated time under 34 W blue LED irradiation with fan cooling. After the reaction was complete, dodecane (45.4 µL) and C₆F₆ (23 µL) were added and the reaction mixture was analyzed by GC and ¹⁹F NMR spectroscopy. Full conversion of **A1** and the 95% yield of the **B1** were observed on GC. 93% conversion of C₆F₅I and the formation of C₆F₅H (95%) were observed on the ¹⁹F NMR spectrum of the reaction mixture.

Fig. S1 ¹⁹F NMR spectrum indicating the conversion of C_6F_5I and the formation of C_6F_5H .

The formation of C_6F_5H after the reaction clearly suggests the involvement of C_6F_5I in the reaction as an oxidant via the HAT process.

7.2. Table 4, entry 3

An oven-dried 4 mL reaction vial equipped with a PTFE-coated stir bar was charged with 3DPAFIPN (7.8 mg, 0.012 mmol, 6 mol%), potassium carbonate (82.9 mg, 0.6 mmol, 3.0 equiv), and CH_2Cl_2 (1 mL) in a glovebox. The vial was closed with a Teflon-lined septum cap and taken out of the glovebox. Amine **A1** (37.5 mg, 0.2 mmol, 1.0 equiv), iodopentafluorobenzene (107 µL, 0.8 mmol, 4.0 equiv), and bromopentafluorobenzene (99.7 µL, 0.8 mmol, 4.0 equiv) were added via a gas-tight syringe, and the solution was stirred for the indicated time under 34 W blue LED irradiation with fan cooling. After the reaction was complete, dodecane (45.4 µL) and C₆F₆ (23 µL) were added and the reaction mixture was analyzed by GC and ¹⁹F NMR spectroscopy. Full conversion of **A1** and the 72% yield of the **B1** were observed on GC. 90% conversion of C₆F₅I and the formation of C₆F₅Br was observed, indicating that the C₆F₅Br did not participate in the reaction at all.

Fig. S2 ¹⁹F NMR spectrum indicating the conversion of C_6F_5I , the formation of C_6F_5H , and the remaining C_6F_5Br .

7.3. Reaction with amine A37

An oven-dried 4 mL reaction vial equipped with a PTFE-coated stir bar was charged with 3DPAFIPN (7.8 mg, 0.012 mmol, 6 mol%), potassium carbonate (82.9 mg, 0.6 mmol, 3.0 equiv), and CH_2Cl_2 (1 mL) in a glovebox. The vial was closed with a Teflon-lined septum cap and taken out of the glovebox. Amine **A37** (34.7 mg, 0.2 mmol, 1.0 equiv) and iodopentafluorobenzene (107 µL, 0.8 mmol, 4.0 equiv) were added via a gas-tight syringe, and the solution was stirred for the indicated time under 34 W blue LED irradiation with fan cooling. After the reaction was complete, dodecane (45.4 µL) and C₆F₆ (23 µL) were added and the reaction mixture was analyzed by GC and ¹⁹F NMR spectroscopy. No conversion of **A37** and no production of corresponding product **B37** were observed on GC. 2.5% conversion of C₆F₅I and the formation of C₆F₅H (15%) were observed on the ¹⁹F NMR spectrum of the reaction mixture.

Fig. S3 ¹⁹F NMR spectrum indicating the conversion of C_6F_5I and the formation of C_6F_5H .

8. Stern-Volmer Quenching Experiments

A solution of 3DPAFIPN in CH_2CI_2 (5 μ M) was prepared in a cuvette. Amine **A1**, C_6F_5I , and **B1** were used as quenchers. The prepared sample was excited at 375 nm and the emissions were measured between 390 - 725 nm. The absorbances of the 3DPAFIPN and quenchers were individually measured and used for the correction of the emission intensity.

Fig. S4 UV-Vis spectra of A1, C₆F₅I, B1, and 3DPAFIPN in CH₂Cl₂.

Fig. S5 Emission spectra with 3DPAFIPN and **A1** (left) / 3DPAFIPN and C_6F_5I (middle) / 3DPAFIPN and **B1** (right).

As depicted in Fig. S5, A1 exhibits significant emission, which would contribute to the overall emission intensity in the mixture solution (Fig. S5, left). Therefore, a linear regression of the emission spectra was conducted to extract the contribution from 3DPAFIPN. The changes of the slope for the

quenching studies with **B1** (0.5 mM, 1:100 ratio) was observed; however, the linearity was maintained within the concentration ranges of the reaction conditions (~1:20 ratio).

Fig. S6 Combined plot of Stern-Volmer quenching studies.

9. Control Experiments with Deuterated Species

9.1. Reaction with A1-D

An oven-dried 4 mL reaction vial equipped with a PTFE-coated stir bar was charged with 3DPAFIPN (7.8 mg, 0.012 mmol, 6 mol%), potassium carbonate (82.9 mg, 0.6 mmol, 3.0 equiv), and CH_2Cl_2 (1 mL) in a glovebox. The vial was closed with a Teflon-lined septum cap and taken out of the glovebox. Amine **A1-D** (37.7 mg, 0.2 mmol, 1.0 equiv) and iodopentafluorobenzene (107 µL, 0.8 mmol, 4.0 equiv) were added via a gas-tight syringe, and the solution was stirred for the indicated time under 34 W blue LED irradiation with fan cooling. After the reaction was complete, dodecane (45.4 µL) and C₆F₅Cl (5.2 µL) were added and the reaction mixture was analyzed by GC and ¹H/²H/¹⁹F NMR spectroscopy (CH₂Cl₂ or CD_2Cl_2). 6% of **A1-D** remained and the 51% yield of the **B1** was observed on GC. ²H NMR spectroscopy suggested that only tiny amount of C₆F₅D and CHDCl₂ were produced. 65% conversion of C₆F₅I and the formation of C₆F₅H (50%) were observed in an ¹⁹F NMR spectrum of the reaction mixture.

Fig. S7 ²H NMR spectrum after the reaction with **A1-D** (CH₂Cl₂).

Fig. S8 Comparison of ${}^{1}H/{}^{2}H$ NMR spectra for the assignment of the observed peaks.

Fig. S9 ^{19}F NMR spectrum after the reaction with CD_2Cl_2.

9.2. Reaction with CD₂Cl₂

An oven-dried 4 mL reaction vial equipped with a PTFE-coated stir bar was charged with 3DPAFIPN (7.8 mg, 0.012 mmol, 6 mol%), potassium carbonate (82.9 mg, 0.6 mmol, 3.0 equiv), and CD₂Cl₂ (1 mL) in a glovebox. The vial was closed with a Teflon-lined septum cap and taken out of the glovebox. Amine **A1** (37.5 mg, 0.2 mmol, 1.0 equiv) and iodopentafluorobenzene (107 μ L, 0.8 mmol, 4.0 equiv) were added via a gas-tight syringe, and the solution was stirred for the indicated time under 34 W blue LED irradiation with fan cooling. After the reaction was complete, dodecane (45.4 μ L) and C₆F₅Cl (25.8 μ L) were added and the reaction mixture was analyzed by GC and ¹H/²H/¹⁹F NMR spectroscopy. Full conversion of **A1** and the >99% yield of the **B1** were observed on GC. 105% conversion of C₆F₅I and the formation of C₆F₅D was detected on a ²H NMR spectrum.

Fig. S10 ¹H NMR spectrum after the reaction with CD₂Cl₂.

Fig. S11 ^2H NMR spectrum after the reaction with CD_2Cl_2.

Fig. S12 19 F NMR spectrum after the reaction with CD₂Cl₂.

9.3. Reaction with A1-D₃

An oven-dried 4 mL reaction vial equipped with a PTFE-coated stir bar was charged with 3DPAFIPN (7.8 mg, 0.012 mmol, 6 mol%), potassium carbonate (82.9 mg, 0.6 mmol, 3.0 equiv), and CH_2Cl_2 (1 mL) in a glovebox. The vial was closed with a Teflon-lined septum cap and taken out of the glovebox. Amine **A1-D**₃ (38.1 mg, 0.2 mmol, 1.0 equiv) and iodopentafluorobenzene (107 µL, 0.8 mmol, 4.0 equiv) were added via a gas-tight syringe, and the solution was stirred for the indicated time under 34 W blue LED irradiation with fan cooling. After the reaction was complete, C₆D₆ (8.9 µL) and C₆F₅Cl (12.9 µL) were added and the reaction mixture was analysed with ²H and ¹⁹F NMR spectroscopies in CH₂Cl₂ and CD₂Cl₂, respectively. The formation of 127% of C₆F₅H and C₆F₅D was observed in ¹⁹F NMR spectra of the reaction mixture. ²H NMR spectroscopy suggested that 61% of C₆F₅D and 59% of the product (**B1-D**₂) exist in the reaction mixture, indicating that the formation of 61% of C₆F₅D and 66% of C₆F₅H during the reaction.

Fig. S13 ¹⁹F NMR spectrum after the reaction with A1-D₃.

Fig. S14 ²H NMR spectrum after the reaction with A1-D₃.
10. DFT Calculation

10.1. DFT Calculation of the Intermediates and the Reaction Pathways

All DFT calculations were carried out using Gaussian 09W.²⁵ Specifically, the (U)M06-2X functional and 6-31+G(d,p) basis set were used to conduct geometry optimization and frequency calculation in the gas phase. Single-point energy calculations were carried out on the optimized geometries using the (U)M06-2X functional and 6-311++G(3df,3pd) basis set. The solvation effect was considered using the SMD solvation model by Truhlar and coworkers for dichloromethane ($\epsilon = 8.93$).²⁶ All structures were confirmed to be at local minima (ground state) by the absence of imaginary frequencies or at saddle point (transition state) by the existence of single imaginary frequency. The lowest-energy conformers were used in the final calculations. The energy barrier for single-electron transfer (SET) process was estimated by the Marcus theory of electron transfer, which can be calculated by the 4-point approaches developed by Nelson.²⁷

Scheme S1 HAT of **A1** by a C_6F_5 radical.

After the formation of the radical adduct between **A1** and a C_6F_5 radical (**A1-C**₆**F**₅), a HAT event can occur. Among four activated C-H bonds, the HAT on the C1 position would be the most probable pathway.

Scheme S2 Formation of diene intermediates.

The radical cation of the amine substrate (**A1-radcat**) prefers the deprotonation of the allylic α nitrogen position, taking advantage of the stabilization by olefin and the nitrogen atom (**A1-rad**). A concurrent HAT event by a C₆F₅ radical provides more stable diene structure (**A1-diene**). The possibility of the SET event between **A1-rad** and a C₆F₅ radical would be very low, due to the high energy barrier for the SET process.

A1-dienerad

Scheme S3 Reactions with diene intermediates.

The diene radical cation species (A1-dieneradcat) still prefers the deprotonation from the C5 position rather than benzylic or C6 positions, taking advantage of the stabilized 7π -electron structure. The SET pathway from A1-dienerad is also not operative under the reaction conditions.

Species	G _{corr} (U)M06-2X/6-31+G(d,p)	E (U)M06-2X(CH ₂ Cl ₂)/6-11++G(3df,3pd)	G(CH ₂ Cl ₂)
CO ₃ ²⁻	-0.011737	-264.0052096	-264.0169466
HCO ₃ -	0.001144	-264.5528875	-264.5517435
A1	0.234442	-560.304191	-560.069749
C ₆ F ₅ •	0.011793	-727.6874314	-727.6756384
C_6F_5H	0.027103	-728.4266511	-728.3995481
$C_6F_5^-$	0.013090	-727.9125690	-727.8994790
A1-C ₆ F ₅	0.267591	-1288.051141	-1287.78355
A1-HATTS1	0.264307	-1288.037906	-1287.773599
A1-rad	0.220323	-559.6780441	-559.4577211
A1-HATTS2	0.266145	-1288.037552	-1287.771407
A1-rad'	0.220886	-559.6738614	-559.4529754
A1-HATTS3	0.261911	-1288.033665	-1287.771754
A1-rad"	0.219813	-559.6618137	-559.4405017
A1-HATTS4	0.263966	-1288.036291	-1287.772325
A1-Nrad	0.21878	-559.6235045	-559.4047245
A1-radcat	0.232438	-560.0904994	-559.8580614
A1-diene	0.211135	-559.0983939	-558.8872589
A1-diene'	0.211252	-559.0928504	-558.8815984
A1-cat	0.224355	-559.5575924	-559.3332374
A1-dieneradcat	0.210819	-558.9214035	-558.7105845
A1-dienerad	0.196721	-558.4700428	-558.2733218
A1-dienerad'	0.195745	-558.4587355	-558.2629905
A1-dienerad"	0.198019	-558.4406908	-41.97043746
A1-dienecat	0.199574	-558.3360056	-558.1364316

Table S6 Calculated energies

Species	Cartesian coordinates
CO ₃ ²⁻ C	0.00000 0.00000 0.00088
0	1.29577 -0.14831 -0.00020
0	-0.77633 -1.04798 -0.00021
0	-0.51944 1.19630 -0.00025
HCO ₃ - C	-0.15032 0.06923 -0.00007
0	0.14708 1.28598 0.00004
0	0.98689 -0.79608 0.00003
Н	1.72649 -0.17802 0.00005
0	-1.23704 -0.51957 -0.00002
A1 C	2.57757 -0.46048 -1.22108
C	4.05763 -0.60215 -0.86698
С	4.51584 0.56616 0.00967
C	3.50469 0.89054 1.07804
С	2.26398 0.39869 1.09826
C	1.71386 -0.52840 0.03704
Н	5.48438 0.34183 0.47142
Н	4.20630 -1.54401 -0.32314
Н	4.66637 -0.65780 -1.77474
Н	2.39943 0.50901 -1.70529
Н	2.26968 -1.24446 -1.92346
н	3.81415 1.57812 1.86279
Н	1.59131 0.68404 1.90419
Н	1.75200 -1.56711 0.42458
Н	4.67660 1.46003 -0.60967
Ν	0.33336 -0.16015 -0.28616
Н	0.09230 -0.53135 -1.20317
C	-0.64639 -0.63689 0.68186
н	-0.40761 -0.19108 1.65579
Н	-0.60238 -1.73176 0.82335
ť	-2.05240 -0.24102 0.29148
l	-3.11592 -1.12756 0.47241
	-2.31144 1.02830 -0.23630
	-4.418/7 -0.75416 0.14363
H	-2.92268 -2.12012 0.87243
	-3.01151 1.40177 -0.50891
	-1.46031 1.71077 -0.38738 4.66076 0.51290 0.27949
C H	-4.00570 0.51280 -0.57848
н	-3.20400 -1.43332 0.28342
н	-5.68221 0.80484 -0.63947
C.E.•	1 22100 0 27070 0 00000
	1.23108 0.37078 0.00000
c c	-0.10355 -1.80871 -0.00001
c c	-1.20741 -0.99992 0.00000
C	0.09054 1.10676 0.00000
F	0.08519 2.42854 0.00001
	-2,24572 1,14594 0,00001
' F	2.42674 0.93601 0.00000
- F	2.24114 -1.69315 -0.00000
F	-2.45654 -1.49394 -0.00001
C ₆ F ₅ H C	-1.19016 -0.96579 0.00001
C	-1.20548 0.42345 0.00000

Table S7 Cartesian coordinates for the calculated intermediates

С	0.00000	1.11548	-0.00001
С	1.20548	0.42345	0.00000
С	1.19016	-0.96579	0.00001
С	0.00000	-1.67637	0.00002
F	2.35746	-1.61323	0.00001
F	2.35506	1.09319	-0.00001
F	0.00000	2.44371	-0.00002
F	-2.35506	1.09319	-0.00001
F	-2.35746	-1.61323	0.00002
Н	0.00000	-2.75932	0.00003
С	-1.14759	-1.01798	0.00001
С	-1.19714	0.37309	0.00000
С	0.00000	1.07599	-0.00001
С	1.19714	0.37309	0.00000
С	1.14759	-1.01798	0.00003
С	0.00000	-1.77394	0.00003
F	2.38678	-1.62237	0.00002
F	2.35950	1.07136	-0.00002
F	0.00000	2.42718	-0.00004
F	-2.35950	1.07136	-0.00002
F	-2.38678	-1.62237	0.00002
с	0.65271	-2.53479	-0.78699
C	0.81430	-4.05209	-0.68949
C	2.29399	-4.43005	-0.58738
C	3.01976	-3.55923	0.40474
C	2,50893	-2.42978	0.90087
C	1,15963	-1.87153	0.49392
ч	2 40282	-5 48110	-0 29757
н	0 28491	-4 41631	0.20026
н	0 35633	-4 53828	-1 55572
н	1 23445	-2 17155	-1 64373
н	-0 39039	-2 25125	-0.95699
н	4 00380	-3 88563	0 73545
н	3 06816	-1 85882	1 64203
н	0 43649	-2 06148	1 30016
н	2 77757	-4 33604	-1 57001
N	1 20382	-0 40941	0.36108
н	1 36703	0.40541	1 25610
C	2 04133	0.04030	-0 69880
н	1 50087	0.104/1	-1 64656
C	2 34472	1 60882	-0 39169
C C	3 42122	1 93701	0.43717
C C	1 53392	2 62956	-0.89369
C C	3 68401	3 26575	0 76414
н	4 06190	1 14509	0 82071
C	1 79619	3 95929	-0 57006
н	0.69605	2 37494	-1 53738
C	2 86993	4 27906	0 25975
н	4 52522	3 51008	1 40513
н	1 16196	4 74603	-0.96617
н	3 07406	5 31529	0.50017
н	2 97508	-0 41010	-0 78788
C C	_0 90/101	0 31667	0.09844
C C	-1 50011	0 1677/	1 27910
c c	-1 60616	0 42200	-1 07672
C C	-2 98040	0.15882	1 311/10
C F	-0 02617	0.10002	2 11700
r C	-0.9201/	0.02001	-1 09700
F	-0.96777	0.54580	-2.26281

 $C_6F_5^-$

A1-C₆F₅

С	-3.68120	0.28324	0.11609
F	-3.65276	0.02673	2.45787
F	-3.68794	0.53539	-2.22578
F	-5.01487	0.27122	0.12419
С	-0.67471	3.02607	-0.76223
С	0.70003	3.64262	-0.50476
С	0.88286	3.95595	0.98228
C	0 38143	2 83531	1 85478
C C	-0.36561	1 82273	1 /0739
C C	0.90152	1 60190	0 02270
	1 02741	1.05100	1 20406
	1.95741	4.15469	1.20490
	1.47305	2.93251	-0.82547
н	0.83241	4.54841	-1.10398
н	-1.46429	3.69475	-0.39426
н	-0.83684	2.8/615	-1.8361/
Н	0.63590	2.87565	2.91211
Н	-0.68753	1.04875	2.10013
Н	0.34123	4.87617	1.24346
N	-2.15305	1.16851	-0.13348
Н	-2.52302	1.35363	-1.06379
С	-2.26446	-0.25772	0.14726
Н	-1.98330	-0.42877	1.19307
Н	-1.55853	-0.85322	-0.46312
С	-3.67223	-0.75680	-0.08025
С	-3.90131	-1.97138	-0.7292
C	-4.76706	-0.01324	0.37332
C	-5.20003	-2.44422	-0.91612
н	-3 05664	-2 55145	-1 09278
C	-6 06473	-0 48177	0 18373
с ц	-1 58775	0.93625	0.10070
C	-6 28527	-1 60072	-0.46005
	-0.20007	2 200/15	1 42200
	-3.30233	0 10420	-1.42233
	-0.900000	0.10420	0.53999
	-7.29731	-2.00305	-0.60779
П	-0.09254	0.97284	-0.52957
C	1.43544	-0.44117	-0.4258
C	2.45126	-0.1/020	-1.30/34
С	1.60978	-1.18330	0.71521
С	3.71602	-0.69323	-1.04841
F	2.26249	0.57608	-2.39854
С	2.87190	-1.70965	0.97956
F	0.61145	-1.42257	1.56852
С	3.91794	-1.45829	0.09636
F	4.73246	-0.46439	-1.87662
F	3.09092	-2.44414	2.06745
F	5.12376	-1.95932	0.34738
С	-2.51095	1.28643	0.46726
С	-3.92121	0.86416	0.88903
С	-4.58829	0.02371	-0.20576
С	-3.70563	-1.12349	-0.60515
С	-2.32530	-1.03733	-0.47036
С	-1.69482	0.10330	0.02267
Н	-5.56130	-0.34196	0.14056
Н	-3.85350	0.26396	1.80414
Н	-4.52382	1.74851	1.11885
н	-2.56928	2.01770	-0.35304
н	-2.00487	1.79703	1.29804
Н	-4.15180	-2.02497	-1.00994
Н	-1.72170	-1.88964	-0.76974
	,0		

A1-HATTS1

A1-rad

C F F

-4.79697	0.66861	-1.07526
-0.32267	0.27160	0.05320
0.01894	0.90627	0.76556
0.57536	-0.83002	-0.24224
0.37420	-1.16357	-1.26858
0.39254	-1.69256	0.41838
2.01355	-0.38732	-0.12131
2.89579	-1.03931	0.74076
2,47890	0.69288	-0.87960
4 22492	-0.62653	0.84236
2 54046	-1 87587	1 33701
2.54040	1 10011	-0 77760
1 70120	1 20255	1 5/006
1.79129	0 4 4 9 7 1	-1.34000
4.08037	0.44071	1 51676
4.90075	-1.14313	1.510/0
4.15369	1.94679	-1.3/2/2
5./1368	0.77233	0.16259
-0.23726	3.19825	0.12505
1.10957	3.85880	-0.17439
2.18411	2.79647	-0.42366
1.68487	1.70944	-1.34048
0.39465	1.54215	-1.64314
-0.72113	2.41584	-1.09641
3.08513	3.25205	-0.84958
1.01394	4.49251	-1.06569
1.40710	4.51065	0.65240
-0.10517	2.51606	0.97442
-0 99570	3 93503	0 40767
2 42504	1 03438	-1 76994
0.09730	0 7/293	-2 32300
0.09750	2 1/227	1 97/22
-0.99401	2 2 4 0 2 7	0 52216
2.49702	2.34337	0.03210
-1.95603	1.0/542	-0.81841
-2.33439	1.28160	-1.0/022
-1.91021	0.66620	0.21065
-1.73664	1.14352	1.18210
-3.18180	-0.14590	0.24716
-3.14753	-1.54095	0.21982
-4.42011	0.50353	0.31284
-4.32970	-2.28008	0.26877
-2.19024	-2.05248	0.15391
-5.60022	-0.23301	0.35952
-4.44493	1.58952	0.32383
-5.55797	-1.62787	0.33943
-4.28855	-3.36456	0.24510
-6.55511	0.28087	0.41327
-6.47864	-2.20174	0.37527
-1.04045	-0.05199	0.08898
0.53168	-1.04510	0.43615
1.03471	-1.84103	-0.56145
1.33655	-0.38985	1.33363
2.41298	-2.01494	-0.65520
0.24044	-2.43729	-1.45698
2 71568	-0.55307	1.24837
0 83528	0.42932	2,26526
2 27620	-1 365/7	0 25062
3.24030 2 01112	1.30347	-1 60240
2.94413	0.07046	1.00240 2 00500
3.33345	1 52640	2.09580
4.56437	-1.52640	0.16460

H N H

С H H C C C C H C H C H H

н

С С С С С С С Н

H H H H H H H

N H C H C C C C H C H C

H H

H H C C C C F C F C F F

A1-HATTS2

F

A1-rad'

С 4.17397 0.41408 -0.70075 С 4.43385 0.04406 0.76185 С 3.29724 -0.75672 1.34278 С 2.10926 -0.88796 0.74673 С 1.74528 -0.20147 -0.55297 Н 5.36734 -0.52273 0.85409 Н 4.33169 -0.47051 -1.33144 Н 4.88708 1.17428 -1.03363 Н 2.55936 1.75637 -0.20785 н 2.56183 1.26532 -1.90438 н 3.46805 -1.24629 2.29961 н 1.32450 -1.48939 1.20338 1.75119 -0.93872 -1.36881 Н 4.57420 0.95480 1.36138 Н Ν 0.38697 0.33359 -0.51095 Н 0.26761 1.08230 0.16272 С -0.68296 -0.51356 -0.65821 н -0.47352 -1.45024 -1.16513 С -2.01063 -0.19700 -0.28276 С -3.04527 -1.14743 -0.49934 С -2.37741 1.03872 0.31389 С -4.35131 -0.88332 -0.13058 н -2.79314 -2.09920 -0.96024 С -3.69279 1.28977 0.67956 н -1.63451 1.81459 0.47532 С -4.69236 0.33806 0.46715 н -5.11793 -1.63201 -0.30728 н -3.94440 2.24453 1.13230 н -5.71772 0.54294 0.75520 С -0.37978 2.11076 1.22200 С 0.60055 3.25931 0.98854 С 1.24972 3.13112 -0.38565 С 0.28028 2.74479 -1.45712 С -0.95510 2.30357 -1.19818 С -1.51303 2.14365 0.19836 н 1.82583 4.02113 -0.66032 Н 0.06152 4.21473 1.04153 Н 1.36536 3.27734 1.77070 Н 0.14196 1.14913 1.12023 н -0.79263 2.15548 2.23642 н 0.62217 2.80556 -2.48774 -1.60694 2.03368 -2.02618 н н -2.15218 3.02329 0.41849 -2.29735 0.91082 0.28551 Ν н -2.36501 0.62195 1.25948 С -3.64383 1.02571 -0.26245 Н -3.55832 1.27799 -1.32714 н -4.22026 1.84376 0.20513 С -4.41130 -0.26920 -0.12227 С -5.75997 -0.26004 0.23888 С -3.78519 -1.49479 -0.37250 С -6.47822 -1.45125 0.33986 н -6.25231 0.68730 0.44523 С -4.49980 -2.68575 -0.26852 Н -2.73311 -1.49992 -0.64130 С -5.84899 -2.66789 0.08635 Н -7.52611 -1.42778 0.62283 Н -4.00305 -3.63109 -0.46483 н -6.40427 -3.59701 0.16848

2.73974 0.90924 -0.88547

С

A1-HATTS3

н	2.02950	2.30154	-0.32267
C C	2 78890	0 69545	-0.08/132
C C	2.70050		1 24072
C	2.97783	-0.02037	-1.24075
C	2.94632	0.14506	1.16340
C	3.36658	-1.35463	-1.14799
F	2.80846	0.52742	-2.44614
С	3.33447	-1.18831	1.26605
F	2.73645	0.85067	2.27922
C	3.54044	-1.93051	0.10700
F	3 57100	-2 08/03	-2 2/180
E	2 50400	1 76152	2.24100
F	3.50498	-1./0152	2.45545
F	3.91135	-3.20407	0.19982
C	2 61751	-0 27407	-1 27614
C S	4 09602	-0 52850	-0.96506
C C	4.09002	0.02000	0.30300
C	4.55940	0.30173	0.19025
C	3.65233	0.78994	1.12432
С	2.29740	0.49568	1.05995
С	1.75772	-0.40686	-0.01636
Н	4.24541	-1.59662	-0.74116
н	4.70738	-0.31855	-1.84940
н	2 / 8967	0 7/30/	-1 665/18
	2.40507	0.74304	2.04266
п 	2.20559	-0.97464	-2.04200
н	4.01308	1.42391	1.93017
Н	1.60918	0.91413	1.78667
Н	1.84168	-1.45858	0.33580
Н	5.61734	0.51851	0.30087
Ν	0.36560	-0.08163	-0.32243
н	0.12039	-0.47206	-1.23017
C	-0 58331	-0 57529	0 66841
U U	0.24224	0.37323	1 62200
п 	-0.54254	-0.10660	1.05209
H	-0.50152	-1.66601	0.82372
C	-2.00673	-0.22944	0.29450
С	-3.03805	-1.14859	0.49743
С	-2.31414	1.02573	-0.24113
С	-4.35664	-0.82090	0.18278
н	-2.80725	-2.13053	0.90364
C	-3 62994	1 35355	-0 55955
е н	-1 50832	1 72272	
	-1.50852	1./33/3	0.40555
L 	-4.05583	0.43223	-0.34715
н	-5.14/2/	-1.54697	0.34554
Н	-3.85600	2.33097	-0.97504
Н	-5.68066	0.68860	-0.59700
C	-1 28506	0 61510	0 87004
C	5 46905	0.01010	0.07004
C	-5.40805	1 20170	0.92430
C	-5.52881	-1.20170	-0.34803
C	-4.16877	-1./2964	-0.72622
С	-3.03051	-1.27763	-0.19490
С	-2.96554	-0.16409	0.83332
Н	-6.22349	-2.03908	-0.21688
н	-5.35380	-1.01247	1.79436
н	-6 40467	0 19670	1 06032
н	_/ 27177	1 2295	-0 03635
н Ц	4.37127	1 20454	1 72740
п 	-4.2/903	1.29454	1./2/40
Н	-4.12789	-2.52536	-1.46768
Н	-2.07742	-1.71165	-0.49480
Н	-2.80968	-0.61464	1.82382
Н	-5.92868	-0.60577	-1.18082
Ν	-1.83743	0.74798	0.64873
н	-0.94118	0.31823	0.95353

A1-rad"

A1-HATTS4

С	-1.68315	1.35568	-0.66874
Н	-2.45278	2.13289	-0.77088
С	-0.31183	1.97449	-0.79707
С	0.46337	1.75461	-1.93790
С	0.22408	2.72471	0.25592
С	1.76276	2.25325	-2.01836
Н	0.05750	1.16243	-2.75439
С	1.52324	3.22013	0.17869
Н	-0.37538	2.89201	1.14661
С	2.29870	2.98019	-0.95625
Н	2.36000	2.06307	-2.90488
Н	1.9338	3.78819	1.00779
н	3.31416	3.35959	-1.01294
H	-1.84314	0.63775	-1.48/35
C	0.63608	-0.58828	0.54250
C	0.96/96	-1.249/3	-0.61424
	1.50903	-0.31340	1.51253
L F	2.27297	-1.69680	-0.79635
r C	0.07308	-1.40329	1 24256
L E	2.8/993	0.75304	1.34330
г С	2 22400	1 1 1 1 1 1 2	0.19600
C C	2 62615	2 2/711	1 00502
F	2.02013	-2.54711	2 27102
F	J.00001	-0.31073	0.01904
1	4.47442	1.00075	0.01504
С	2.65941	0.87944	-0.93204
С	4.11680	0.43766	-0.80651
С	4.46778	0.16467	0.65765
С	3.38990	-0.62914	1.34818
С	2.17183	-0.82627	0.83988
С	1.71653	-0.23926	-0.48678
Н	5.42158	-0.37000	0.73310
Н	4.27060	-0.47780	-1.39289
Н	4.78521	1.19808	-1.22175
Н	2.47061	1.74958	-0.29136
Н	2.41835	1.17192	-1.95897
Н	3.63065	-1.06254	2.31698
Н	1.44365	-1.41973	1.38905
Н	1.72331	-1.04809	-1.24236
Н	4.60923	1.11345	1.19425
N	0.37376	0.28313	-0.31330
С	-0.63310	-0.70417	-0.58232
н	-0.39957	-1.65168	-0.06310
H	-0.59026	-0.95510	-1.65862
C	-2.03/06	-0.26393	-0.22602
C	-3.09691	-1.156/6	-0.41158
	-2.301//	1.00953	0.27725
L L	-4.40198	-0.78527	-0.10109
C C	2 61012	1 20261	0.50203
ц	-3.01013	1.56201	0.38879
C C	-1.47021	0.49003	0.42133
ч	-5 21486	-1 48933	-0 25105
н	-3 80531	2 37624	0 98086
н	-5.67888	0.78309	0.64483
	2.07000	0.70000	0.01100
С	-1.94788	1.13485	0.48453
С	-3.44665	1.35086	0.27897
С	-3.96969	0.47544	-0.85798
С	-3.45859	-0.93210	-0.75767

A1-Nrad

A1-radcat

-2.45245	-1.31226	0.03835
-1.72074	-0.35024	0.93627
-5.06419	0.45992	-0.85790
-3.98071	1.11918	1.20739
-3.62243	2.40820	0.06207
-1.41133	1.29385	-0.45864
-1.53359	1.80726	1.23998
-3.95476	-1.69068	-1.35839
-2.15475	-2.35685	0.09001
-2.05471	-0.43131	1.97983
-3.67809	0.88880	-1.83306
-0.31028	-0.61161	0.94363
0.22720	-0.36986	1.77847
0.45114	-1.05885	-0.20157
-0 14196	-0.81996	-1 09565
0.14130	-2 15846	-0 16181
1 81779	-0 // 2882	-0 18880
2 96574	-1 21/52	-0.06769
1 02061	-1.21455	0.00709
1.92901	0.50501	-0.20224
4.22017	-0.01000	-0.04839
2.88207	-2.295/1	0.00230
3.18452	1.50023	-0.25700
1.03/66	1.57768	-0.39513
4.32907	0.77794	-0.14007
5.11209	-1.22135	0.03667
3.27030	2.64457	-0.33629
5.30803	1.24517	-0.12563
-2.56810	1.30902	0.34000
-3.93812	0.90360	0.88501
-4.58758	-0.12429	-0.00714
-3.81386	-1.02697	-0.63040
-2.35606	-1.00809	-0.50606
-1.73825	0.10164	-0.03242
-5.66964	-0.16064	-0.08582
-3.81100	0.47131	1.89053
-4.57005	1.78897	0.99902
-2.69092	1.91803	-0.56785
-2.03396	1.92924	1.06904
-4.26352	-1.81077	-1.23425
-1.79013	-1.86931	-0.84279
-0.37118	0.28494	0.00975
-0.03705	0 93547	0 70894
0 52475	-0.82146	-0.26873
0 33524	-1 15589	-1 29750
0 21921	-1.68011	0.39034
1 96380	-0 38961	-0 12511
2 82384	-1 038/6	0.12511
2.02304 3 /5315	0 67006	-0 88522
Z.43ZI3 A 15360	-0 62/05	-0.00337
4.15509	-0.05405	1 25020
2.45064	-1.00744	1.35928
3.///0/	1.08/11	-0./0143
1./8214	1.18/20	-1.5/418
4.63219	0.42977	0.12463
4.81228	-1.14831	1.57801
4.14546	1.91580	-1.35824
5.66587	0.74682	0.22039
2.34341	-0.92299	0.56506
3.84846	-0.94298	0.69633
4.51817	-0.18414	-0.45094

A1-diene

A1-diene'

C C H

Н Н Н Н н Н Н н Ν Н С H H С C C С H C Н С Н Н Н

С С С С С С Н

H H H H H N H C H H

C C C H C

H C H H H

C C C

3.85434	1.15264	-0.66512
2.54702	1.30229	-0.42190
1.73291	0.17069	0.06163
5.58715	-0.05721	-0.25552
4.14499	-0.48331	1.65271
4.21273	-1.97422	0.71967
1.77286	-1.76097	0.95046
4.43791	1.98186	-1.05608
2.04624	2.25354	-0.58677
4.43095	-0.76805	-1.38064
0.35201	0.36869	0.00555
0.04987	0.90229	-0.80198
-0.52306	-0.74623	0.31226
-0.34094	-1.03357	1.35654
-0.29296	-1.63032	-0.30553
-1.97089	-0.35657	0.13547
-2.82803	-1.12275	-0.65535
-2.47381	0.78330	0.77281
-4.16849	-0.76483	-0.80402
-2.44359	-2.00567	-1.15968
-3.80969	1.14486	0.62320
-1.80511	1.38342	1.38410
-4.66170	0.37002	-0.16549
-4.82359	-1.37058	-1.42246
-4.18887	2.03041	1.12398
-5 70356	0.65176	-0 28139
5.70550	0.051/0	0.20100
2.43114	1.17804	0.74293
3.74798	1.36110	-0.01585
4.54973	0.06048	-0.01508
3.70537	-1.12172	-0.36260
2.35535	-1.13338	-0.31053
1.64877	0.02757	0.17911
5.39500	0.11543	-0.70753
3.53563	1.65894	-1.04836
4.32304	2.16789	0.44249
2.63874	0.93329	1.79467
1.82709	2.08971	0.73270
4.21521	-2.03073	-0.67443
1.79878	-2.01673	-0.60108
4.99200	-0.12859	0.97547
0.34906	0.07508	0.18761
-0.09945	0.91169	0.55720
-0.58839	-0.97436	-0.28710
-0.43182	-1.86868	0.32393
-0.33500	-1.20419	-1.32608
-2.00068	-0.46844	-0.16625
-2.57420	0.25935	-1.21258
-2.72609	-0.68826	1.00764
-3.86497	0.76644	-1.08383
-2.01758	0.41863	-2.13313
-4.01734	-0.18085	1.13483
-2.28836	-1.26737	1.81728
-4.58521	0.54674	0.08991
-4.31083	1.32358	-1.90083
-4.58149	-0.36067	2.04370
-5.59316	0.93608	0.18705
3.33310	2.23000	5.20,00
-2.48549	1.21407	-0.69274
-3.84462	1.35023	0.00279
-4.52466	0.03269	0.16980

A1-cat

A1-dieneradcat

C C C

H H H H H H N H C

H H C

С

C C C C C

н н н н н н н х н с н н с

C C C

Н С Н С Н Н

C C C

-3.79909	-1.13645	0.27227
-2.39763	-1.14050	0.19880
-1.70111	0.03587	-0.18331
-5.60367	0.00839	0.28177
-3.71784	1.78817	1.00514
-4.47847	2.04597	-0.55175
-2.64653	1.03659	-1.76493
-1.90485	2.13538	-0.59937
-4.31293	-2.07227	0.46570
-1.84870	-2.04901	0.41790
-0.38863	0.09772	-0.18105
0.05518	0.96021	-0.48825
0.54245	-0.97912	0.22275
0.38703	-1.83275	-0.44564
0.28847	-1.27977	1.24425
1.95770	-0.47299	0.13836
2,53795	0.16870	1.23586
2 67950	-0 60580	-1 05074
3 83162	0.67662	1 14335
1 98391	0.26020	2 16711
2 97222	-0.09726	-1 1/211
2 23619	-1 11209	-1 90136
4 54801	0 54425	-0.04574
4.34801	1 166/1	1 00076
4.28202	-0 20047	-2 06381
4.55424	0.20947	0 11 5 10
5.55604	0.93413	-0.11319
-2.55639	1.25856	0.60259
-4.04400	1.08169	0.52069
-4.61319	-0.03678	-0.00838
-3.82142	-1.10309	-0.50617
-2.41024	-1.02033	-0.46100
-1.78055	0.08969	0.05295
-5.69566	-0.11731	-0.04897
-4.66239	1.88949	0.89954
-2.24880	1.43495	1.64992
-4.29336	-1.98811	-0.91614
-1.82187	-1.84949	-0.83975
-0.41395	0.25568	0.06751
-0.05406	0.90934	0.75201
0.48399	-0.83379	-0.27020
0.28030	-1.13278	-1.30676
0 29958	-1 71570	0 36293
1 92122	-0 39267	-0 13813
2 79192	-1 03476	0 74280
2 39522	0.68021	-0 90141
4 11893	-0.61880	0.50141
2 / 2963	-1 86596	1 3/1225
2.42505	1.000000	-0 78566
1 71724	1 18259	-1 58681
1.71724 1 58336	0 44030	0.09505
4.30320	-1 12774	1 5/651
4.70040	1 02179	-1 28/70
4.07JUI	0 77/07	1.304/3
-7 24565	2.17151	0.06537
2.27505	2.17131	5.50557
-2.56078	1.15846	0.58982
-4.05323	1.07993	0.62899
-4.60721	-0 161/1	0 00600
	0.10141	0.00090
-3.79382	-1.09823	-0.54891

A1-dienerad

A1-dienerad'

C C C

H H H H H H N H C H

H C C

С С Н С Н С Н С Н С Н Н Н Н Н

С

C C C C C

H H H H H N H C H H

C C C

H C H C H H H H

С

С

C C C

С	-1.77365	0.19265	0.00573
н	-5.68432	-0.29795	0.00783
н	-4.41021	1.16302	1.67076
н	-4,49093	1,96601	0.13423
Н	-2 08884	2 03564	1 02662
н	-4 22791	-1 98965	-0.99318
ц	-1 77645	-1 73206	-1 02167
N	0 202/0	0.26452	0.05267
	-0.38348	1 01000	0.03307
	-0.04089	0.70105	0.03940
	0.48877	1 22222	-0.19895
н	0.32116	-1.23233	-1.18943
н	0.27261	-1.5/536	0.54506
C	1.93546	-0.3/148	-0.08945
С	2.79890	-0.99873	0.80934
С	2.42921	0.65733	-0.89968
С	4.13766	-0.61426	0.89480
Н	2.42148	-1.79352	1.44772
С	3.76322	1.04518	-0.81370
Н	1.75487	1.15059	-1.59463
С	4.62214	0.40870	0.08389
Н	4.79828	-1.11137	1.59836
Н	4.13551	1.84322	-1.44875
н	5.66256	0.71097	0.15034
С	-2.69030	-1.16305	0.59284
С	-4.03514	-1.13203	-0.13543
С	-4.59123	0.26899	-0.17951
С	-3.74613	1.30781	-0.28356
C	-2.29793	1.11757	-0.30010
C	-1.77544	-0.06431	0.10755
н	-5 66639	0 41766	-0 19346
н	-3 89346	-1 48857	-1 16779
н	-4 73371	-1 82255	0 34506
н	-2 21224	-2 1/220	0.34560
н	_/ 128/8	2 22008	-0 38033
н	-1 66061	1 02110	-0 62788
N	-1.00001	0.21005	0.02700
	-0.42027	1 27096	0.22454
	-0.15562	-1.2/900	0.59005
	0.38001	0.01279	0.19010
H C	0.28000	1.64300	0.33994
C	1.94983	0.26759	0.05630
C	2.94068	1.26641	0.24126
C	2.39276	-1.04383	-0.252/1
C	4.28746	0.96616	0.13902
Н	2.62577	2.28012	0.4/451
С	3.74737	-1.33340	-0.34558
Н	1.67386	-1.83252	-0.45676
С	4.70717	-0.33863	-0.14911
Н	5.02287	1.75116	0.28710
Н	4.05937	-2.34513	-0.58723
Н	5.76359	-0.57175	-0.22663
Н	-2.84641	-1.02074	1.67288
С	-2.50337	1.39578	-0.00073
С	-3.99037	1.26199	-0.00048
С	-4.59536	0.06265	0.00009
С	-3.79381	-1.14140	0.00049
С	-2.43034	-1.13972	0.00037
С	-1.73262	0.10733	-0.00016
Н	-5.67542	-0.02294	0.00025
Н	-4.56378	2.18366	-0.00080

A1-dienerad"

A1-dienecat

Н -2.19876	1.99102 0.87256
Н -4.30771	-2.09871 0.00091
Н -1.87952	-2.07201 0.00071
N -0.42425	0.16388 -0.00019
Н 0.02829	1.07523 -0.00059
C 0.50279	-0.99185 0.00029
н 0.29598	-1 59/19 -0 89010
Н 0.25550	-1 50353 0 80100
C 1 02160	0.49992 0.0010
C 1.52105	0.22278 1.20020
C 2.57455	-0.23576 1.20950
C 2.57407	-0.23512 -1.20904
C 3.8/135	0.27473 1.20855
H 2.0/4/6	-0.44548 2.15172
C 3.8/16/	0.2/338 -1.20851
H 2.07533	-0.44787 -2.15136
C 4.51854	0.52904 -0.00004
H 4.37847	0.46310 2.14880
H 4.37904	0.46070 -2.14883
H 5.53105	0.91874 -0.00012
Н -2.19903	1.99002 -0.87480
C 1.57767	0.84998 0.72698
C 2.98801	1.34358 0.40497
C 3.96461	0.16828 0.34160
C 3.40270	-0.98271 -0.44526
C 2.11933	-1.09149 -0.79875
C 1.08286	-0.06757 -0.40581
Н 4.91235	0.48071 -0.10785
H 2.98074	1.86832 -0.55813
Н 3.30584	2.06596 1.16090
H 1 59259	0 27561 1 66193
H 0.87722	1 68066 0 86243
Н 4.09394	-1 76105 -0 75947
Н 1.78331	-1 91907 -1 /1979
Н 0.79951	0 52750 -1 28164
Н 0.75551	-0.18110 1.25270
N 0.12516	0.70150 0.02206
П -0.12510 П 0.04916	1 69504 0 47366
C 1 20261	
C -1.59201	-0.33038 -0.00122
C -1./4882	0.91810 -0.54577
C -2.41439	-1.21162 0.52836
C -3.06/93	1.30331 -0.54723
H -0.98603	1.5/534 -0.94545
C -3./2522	-0.80445 0.51172
H -2.13542	-2.1/842 0.93/64
C -4.06342	0.45299 -0.02483
H -3.34620	2.26873 -0.95476
H -4.49979	-1.44952 0.91063
H -5.10032	0.77068 -0.03736
C -1.62873	-0.80198 0.91822
C -2.98559	-1.41933 0.57844
C -3.97511	-0.33944 0.13859
C -3.35654	0.61683 -0.84352
C -2.04321	0.71817 -1.06279
C -1.03327	-0.13722 -0.33437
H -4.86208	-0.79462 -0.31275
H -2.86110	-2.15252 -0.22767
Н -3.36944	-1.96099 1.44658
Н -1.75685	-0.04236 1.70021
H -0.92883	-1.55092 1.30326

A37-radcat

A37-Me-radcat

Н Н

-4.02778 1.2470	06 -1.42214
-1.65948 1.3944	41 -1.82358
-0.67226 -0.8974	42 -1.03009
-4.33875 0.2264	47 1.00712
0.14307 0.6784	42 0.05379
1.41344 0.2158	0 -0.01606
1.69642 -1.1551	L8 -0.31736
2.51122 1.1016	64 0.22697
2.99934 -1.5966	57 -0.36602
0.89563 -1.8658	30 -0.47269
3.80564 0.6387	73 0.15954
2.33210 2.148	50 0.43592
4.06356 -0.7099	94 -0.13515
3.20171 -2.6402	17 -0.57973
4.62905 1.323	19 0.32996
5 08628 -1 0676	59 -0 18366
-0.13701 2.0113	32 0.59785
0 40514 2 1532	29 1 53357
0 15196 2 7831	18 -0 12231
1 20778 2 0010	$10 \ 0.12231$
-1.20778 2.0910	57 0.77542
1.38037 0.1316	6 1.28361
2.84741 0.0948	30 1.71952
3.69723 -0.6886	67 0.71654
3 38621 -0 3082	29 -0 70600
2 30033 0 3729	1 -1 07304
1 28790 0 8634	10 -0 05558
1.20730 0.005= 1.76182 -0.5267	7 0 91101
3 22955 1 119	57 1 80067
2 92313 -0 350	1.00007
1 00007 0 890	50 1 20171
0.76200 0.651	50 1.20171
4 09057 -0 616	07 -1 47526
2 14044 0 6411	$12 \ 7 \ 11.47520$
	13 - 2.11494
2 52476 1 760	0.13317
0 10122 0 000	54 0.83702
-0.10135 0.955	
-1.13403 0.0991	13 -0.24800
-0.99826 -1.314	73 -0.45544
-2.34439 0.654	79 0.29206
-2.06588 -2.126	
-3.30008 -0.2208	58 U.04295
-3.23340 -1.597	17 0.44768
-1.99863 -3.192	26 -0.29751
-4.25904 0.176	15 1.10340
-4.04970 -2.258	05 0.72026
-2.49241 2.113	/1 0.64550
-1.56961 2.528	59 1.05992
-2./8410 2./218	34 -0.21563
-3.2/239 2.2260	54 1.39921
0.16557 -1.9189	91 -1.19322
0.43608 -1.3230	J6 -2.06794
1.06097 -2.0023	31 -0.57222
-0.09909 -2.9210	5 -1.53279
-0.35682 2.1504	4 -1.37787
-1.33703 2.0909	99 -1.84526
-0.26797 3.0582	22 -0.77289
0.40978 2.1885	6 -2.15955
2 00245 0 700	0 1 14 6 0 4
2.00315 -0.7329	JU -1.11684
3.49506 -0.9494	19 -1.38131

A38-Me-radcat

A39-Me-radcat

C C

н Н Н Н Ν С С C C Н С Н С Н Н Н С Н Н Н

С

C C

C C С Н н Н Н Н Н Н Н Н Ν С С С C C С Н Н Н С Н Н Н С Н Н н С н Н Н

С	4.33251	0.15383	-0.73080
С	3.88390	0.44986	0.67473
С	2.72858	0.02683	1.19209
С	1.75351	-0.81850	0.39161
Н	5.39052	-0.12610	-0.71982
Н	3.79812	-1.92428	-0.98017
Н	3.67668	-0.98078	-2.45844
Н	1.70321	0.24804	-1.50087
Н	1.39732	-1.48759	-1.62770
Н	4.54723	1.04249	1.30068
Н	2.46577	0.25110	2.22414
Н	1.88549	-1.86636	0.69544
Н	4.27531	1.07857	-1.32172
Ν	0.33981	-0.54939	0.75562
С	-0.39204	0.50652	0.28160
С	0.30990	1.73881	0.09881
С	-1.81997	0.44259	0.06261
С	-0.37752	2.91834	-0.06382
С	-2.46089	1.67368	-0.04841
С	-1.77748	2.89178	-0.08099
Н	0.16082	3.85673	-0.13362
Н	-3.53529	1.69718	-0.18010
Н	-2.33922	3.81596	-0.16814
С	-2.61629	-0.84234	-0.27740
С	-0.14937	-1.34542	1.87732
Н	-1.08862	-0.94026	2.24209
Н	-0.25489	-2.39851	1.60144
Н	0.60031	-1.27417	2.67398
Н	1.38629	1.74877	0.22182
С	-3.72096	-0.48321	-1.29987
Н	-4.15114	-1.41077	-1.68556
Н	-4.54182	0.07997	-0.84954
Н	-3.32368	0.08522	-2.14581
С	-3.33703	-1.45386	0.94474
Н	-4.09893	-2.15267	0.58753
Н	-2.67550	-2.01769	1.60275
Н	-3.84383	-0.68163	1.53175
С	-1.72988	-1.89185	-0.97401
Н	-1.26654	-1.47170	-1.87324
Н	-0.94121	-2.30143	-0.34235
Н	-2.35611	-2.73242	-1.28414

10.2. DFT Calculation of the Redox Potential

The redox potentials (E°) of the species were calculated using the protocol reported by Liu and Guo.²⁸ Computation was conducted to obtain values described in the thermodynamic cycles. All DFT calculations were carried out using Gaussian 09W.²⁵ Specifically, the (U)B3LYP functional and 6-31+G(d) basis set were used to conduct geometry optimization and frequency calculation in the gas phase. Single-point energy calculations were carried out on the optimized geometries using the 6-311++G(2df,2p) basis set. The solvation free energies in acetonitrile were calculated with 6-311++G(2df,2p) using D-PCM, including additional keywords (Icomp=4, TSNUM=60, TSARE=0.4, radii=bondi, alpha=1.20). All structures were confirmed to be at local minima by the absence of imaginary frequencies. The lowest-energy conformers were used in the final calculations.

Scheme S4 Thermodynamic cycle for the redox potential of A1-diene.

	A1-diene	A1-dieneradcat
H _{corr} [Hartree]	0.263184	0.263992
G _{corr} [Hartree]	0.210153	0.209409
E _{gas} [Hartree]	-559.3246798	-559.0901835
H _{gas} [kcal/mol]	-350816.1202	-350668.4646
G _{gas} [kcal/mol]	-350849.3976	-350702.7159
E (CH ₃ CN) [kcal/mol]	-559.3312702	-559.1610415
ΔG _{solv} [kcal/mol]	-4.135529038	-44.46403272

Table S8 Thermodynamic data for the calculation of the redox potential of A1-diene

IP (ionization potential) = H_{gas} (A1-dieneradcat) – H_{gas} (A1-diene)

= (-350668.4646) - (-350816.1202) = 147.6556 kcal/mol = 6.40 eV

IP (corrected) = 6.40 eV + 0.28 eV = 6.68 eV

 $T\Delta S \text{ (ionization)} = H_{gas} \text{ (A1-dieneradcat)} - H_{gas} \text{ (A1-diene)} - G_{gas} \text{ (A1-dieneradcat)} + G_{gas} \text{ (A1-diene)} = (-350668.4646) - (-350816.1202) - (-350702.7159) + (-350849.3976) = 0.9739 \text{ kcal/mol}$

T Δ S (ionization, corrected for the electron spin degeneracy) = (0.9739) + 0.82 = 1.7939 kcal/mol

E° (calc, A1-dieneradcat/A1-diene)

= IP (corrected) + (1/23.06)[-T Δ S (ionization, corrected) + Δ G_{solv} (A1-dieneradcat) - Δ G_{solv} (A1-diene)] - 4.43²⁹

 $= 6.68 + (1/23.06)[(-1.7939) + (-44.46403272) - (-4.135529038)] - 4.43 = 0.42 \vee$

Scheme S5 Thermodynamic cycle for the redox potential of A1-rad.

	A1-rad	A1-cat
H _{corr} [Hartree]	0.273959	0.277204
G _{corr} [Hartree]	0.219442	0.22304
E _{gas} [Hartree]	-559.9115427	-559.7250323
H _{gas} [kcal/mol]	-351177.6205	-351058.5473
G _{gas} [kcal/mol]	-351211.8304	-351092.5357
E (CH ₃ CN) [kcal/mol]	-559.9173762	-559.7956484
ΔG _{solv} [kcal/mol]	-3.660548651	-44.31224457

Table S9 Thermodynamic data for the calculation of the redox potential of A1-rad

IP (ionization potential) = H_{gas} (A1-cat) – H_{gas} (A1-rad)

= (-351058.5473) - (-351177.6205) = 119.0732 kcal/mol = 5.16 eV

IP (corrected) = 5.16 eV + 0.28 eV = 5.44 eV $T\Delta S$ (ionization) = H_{gas} (A1-cat) - H_{gas} (A1-rad) - G_{gas} (A1-cat) + G_{gas} (A1-rad) = (-351058.5473) - (-351177.6205) - (-351092.5357) + (-351211.8304) = -0.2215 kcal/mol

T Δ S (ionization, corrected for the electron spin degeneracy) = (-0.2215) + 0.82 = 0.5985 kcal/mol

```
E^{\circ} \text{ (calc, A1-cat/A1-rad)} = IP \text{ (corrected)} + (1/23.06)[-T\Delta S \text{ (ionization, corrected)} + \Delta G_{solv} \text{ (A1-cat)} - \Delta G_{solv} \text{ (A1-rad)}] - 4.43^{29} = 5.44 + (1/23.06)[(0.5985) + (-44.31224457) - (-3.660548651)] - 4.43 = -0.77 \text{ V}
```

11. Trials to Trap the Diene Intermediate (A1-diene)

Scheme S6 Summary of the Diels-Alder trapping of A1-diene with the dienophiles.

The trapping of the proposed intermediate **A1-diene** was tried by adding a variety of dienophiles, such as *N*-methylsuccinimide, maleic anhydride, diethyl acetylenedicarboxylate, and 4-phenyl-1,2,4-triazoline-3,5-dione. In all cases, no desired Diels-Alder adduct was observable, and only the aromatized product **B1** was detected.

12. Reaction with in situ Generated Imine Intermediate (A1-imine)

An oven-dried 25 mL Schlenk tube equipped with a PTFE-coated stir bar was charged with benzylamine (341 μ L, 2.0 mmol, 1.0 equiv), 2-cyclohexen-1-one (194 μ L, 2.0 mmol, 1.0 equiv), sodium sulfate (700 mg), and CH₂Cl₂ (4 mL). The reaction mixture was degassed for 10 min. and stirred under inert atmosphere for 14 h at room temperatures. After the reaction was done, the reaction mixture was further filtered through a pad of sodium sulfate, and the organic layer was concentrated in vacuo and further utilized in the next step.

An oven-dried 4 mL reaction vial equipped with a PTFE-coated stir bar was charged with 3DPAFIPN (7.8 mg, 0.012 mmol, 6 mol%), potassium carbonate (82.9 mg, 0.6 mmol, 3.0 equiv), and CH_2Cl_2 (1 mL) in a glovebox. The vial was closed with a Teflon-lined septum cap and taken out of the glovebox. Imine **A1-imine** (37.1 mg, 0.2 mmol, 1.0 equiv) and iodopentafluorobenzene (107 µL, 0.8 mmol, 4.0 equiv) were added via a gas-tight syringe, and the solution was stirred for the indicated time under 34 W blue LED irradiation with fan cooling. After the reaction was complete, dodecane (45.4 µL) was added and the reaction mixture was analyzed by GC. Only 2% of the desired product **B1** was observed, indicating that the suggested **A1-imine** is not participating in the reaction as a key intermediate.

13. Experiments to Detect Halogen Bonding in the Reaction Conditions

A solution of C_6F_5I (13.3 µL, 0.1 mmol) in CD_2CI_2 (0.5 mL) was prepared in the NMR tube, ¹⁹F NMR spectrum was obtained. Amine **A1** (28.1 mg, 0.15 mmol) was added to the solution, and ¹⁹F NMR was obtained again to check the shifts in the NMR spectrum.

Fig. S15 Comparison of the 19 F NMR spectrum after the addition of A1 to the solution of C₆F₅I.

Although slight changes in the chemical shifts were observed, this is not likely from the complexation mediated by halogen bonding. When comparing with previous examples of halogen bonding with C_6F_5I , the changed value is too small.³⁰

In addition, 2,3,5,6-tetramethylpyrazine, which is known to form halogen bonding with iodinecontaining molecules efficiently,³¹ did not shut down the reactivity in the standard reaction conditions. This result suggested that the halogen bonding does not play a key role in the observed dehydrogenation reaction.

14. Experiments to Detect Electron Donor-Acceptor (EDA) Complexation

A. Photoinduce electron transfer (PET) between C₆F₅I and aniline via EDA complex

Q.-Y. Chen J. Chem. Soc. Perkin. Trans. 1 1993, 1705.

B. PET between C₆F₅I and allylic amine via EDA complex

Scheme S7 Activation of C₆F₅I via photoinduced electron transfer.

Q.-Y. Chen and co-worker reported the reaction between C_6F_5I and aromatic compounds under UV irradiation, producing perfluoroarylated species.³² The mechanism of the reaction was proposed as the photoinduced electron transfer (PET) between electron-deficient C_6F_5I and electron-rich aromatic species to generate radical species (Scheme S7A). A similar scenario was proposed to the developed CD process via the activation of C_6F_5I through the PET process of electron donor-acceptor (EDA) complex (Scheme S7B).

Fig. S16 UV-Vis absorption spectra for the A1, C_6F_5I , and their mixtures (CH_2CI_2).

To check the possibility of the photoinduced electron transfer (PET) via the formation of electron donor-acceptor (EDA) complex, UV-Vis absorption spectra were checked (Fig. S16). It seemed that the absorption between 400 – 500 nm was enhanced significantly when the **A1** (0.25 M) and C_6F_5I (1.00 M) were mixed (Fig. S16, blue dashed line). However, this absorption spectrum is almost identical to the numerical sum of individual absorption spectra (Fig. S16, green solid line), indicating that no enhancement of the absorption of the blue light region via EDA complexation occurred in the reaction mixture.

15. Quantum Yield Measurement

The quantum yield was measured following a procedure reported by the Yoon group.³³

15.1. Actinometry

The photon flux was measured following standard actinometry with potassium ferrioxalate. A potassium ferrioxalate solution was prepared by dissolving 737 mg of potassium ferrioxalate in 10 mL of 0.05 M sulfuric acid. The solution was rigorously mixed for full solvation. Separately, 20 mg of 1,10-phenanthroline and 2.25 g of sodium acetate were dissolved in 10 mL of 0.5 M sulfuric acid. All solutions were handled in the dark at all times. 2.0 mL of the ferrioxalate solution was transferred to a cuvette and irradiated for 90.0 seconds at 436 nm with a slit size of 20.0 nm. After irradiation, 0.35 mL of the phenanthroline solution was taken and mixed with 0.35 mL of the phenanthroline solution for comparison. After 1 h, the absorbance of the solutions was measured at 510 nm.

Conversion of the ferrioxalate solution could be calculated using the following equation:

mol Fe²⁺ =
$$\frac{V\Delta A}{l \cdot \varepsilon}$$

Here, V is the volume of the solution, ΔA is the difference in absorbance at 510 nm, l is the cuvette dimension, and ε is the molar absorption coefficient.

The photon flux was calculated using the following equation:

photon flux =
$$\frac{\text{mol Fe}^{2+}}{\phi \cdot t \cdot f}$$

Here, \emptyset is the quantum yield of ferrioxalate, t is the irradiation time, and f is the fraction of light absorbed by the ferrioxalate solution at 436 nm.

Fig. S17 Absorbance of the ferrioxalate solutions.

From the above absorption spectra, $\Delta A = 1.168$.

Therefore,

mol Fe²⁺ =
$$\frac{V\Delta A}{l \cdot \varepsilon}$$
 = $\frac{0.00235 \cdot 1.168}{1 \cdot 11000}$ mol = 2.495 × 10⁻⁷ mol

Then,

photon flux = $\frac{\text{mol Fe}^{2+}}{\phi \cdot t \cdot f} = \frac{2.495 \cdot 10^{-7}}{1.01 \cdot 90 \cdot 0.99833}$ einstein/s = 2.75×10^{-9} einstein/s

15.2. Quantum Yield Measurement

An oven-dried 4 mL reaction vial equipped with a PTFE-coated stir bar was charged with 3DPAFIPN (15.6 mg, 0.024 mmol, 6 mol%), potassium carbonate (165.8 mg, 1.2 mmol, 3.0 equiv), and CH₂Cl₂ (2 mL) in a glovebox. The vial was closed with a Teflon-lined septum cap and taken out of the glovebox. **A1** (74.9 mg, 0.4 mmol, 1.0 equiv), and iodopentafluorobenzene (214 μ L, 1.6 mmol, 4.0 equiv) were added via a gas-tight syringe, and the solution was irradiated for 10800 s (3 h) under the identical co nditions with the actinometry. The resulting mixture was analyzed by GC following the addition of do decane (90.8 μ L, 0.4 mmol) as an internal standard to give 0.61% yield of the desired product.

mol product = $0.61\% \cdot 0.40$ mmol = $2.44 \cdot 10^{-6}$ mol Quantum yield = $\frac{\text{mol product}}{\text{flux} \cdot t \cdot f} = \frac{2.44 \cdot 10^{-6}}{2.75 \cdot 10^{-9} \cdot 10800 \cdot 1} = 0.08$

Here, flux is the photon flux, t is irradiation time, and f is the fraction of light absorbed at 436 nm. In this case, f was taken to be unity based on the absorption spectrum shown in Fig. S4.

16. References

- 1 R. S. Grainger, M. Betou, L. Male, M. B. Pitak and S. J. Coles, Org. Lett., 2012, 14, 2234.
- 2 J. Pawlas, Y. Nakao, M. Kawatsura and J. F. Hartwig, J. Am. Chem. Soc., 2002, 124, 3669.
- 3 R. T. Gephart III, D. L. Huang, M. J. B. Aguila, G. Schmidt, A. Shahu and T. H. Warren, *Angew. Chem., Int. Ed.,* 2012, **51**, 6488.
- 4 S. H. Nazari, N. Tiempos-Flores, K. G. Forson, J. E. Bourdeau and D. J. Michaelis, *J. Org. Chem.*, 2018, 83, 10646.
- 5 M. B. Brennan, T. D. W. Claridge, R. G. Compton, S. G. Davies, A. M. Fletcher, M. C. Henstridge, D. S. Hewings, W. Kurosawa, J. A. Lee, P. M. Roberts, A. K. Schoonen and J. E. Thomson, *J. Org. Chem.*, 2012, **77**, 7241.
- 6 A. J. Cresswell, S. G. Davies, J. A. Lee, M. J. Morris, P. M. Roberts and J. E. Thomson, *J. Org. Chem.*, 2012, **77**, 7262.
- 7 T. Nemoto, T. Masuda, Y. Akimoto, T. Fukuyama and Y. Hamada, Org. Lett., 2005, 7, 4447.
- 8 K. Taniguchi, K. Tsubaki, K. Take, K. Okumura, T. Terai and Y. Shiokawa, *Chem. Pharm. Bull.*, 1994, **42**, 896.
- 9 G. Stork, P. C. Tang, M. Casey, B. Goodman and M. Toyota, J. Am. Chem. Soc., 2005, 127, 16255.
- 10 P. Bakuzis and M. L. F. Bakuzis, J. Org. Chem., 1981, 46, 235.
- 11 H. Nagashima, N. Ozaki, M. Ishii, K. Seki, M. Washiyama and K. Itoh, J. Org. Chem., 1993, 58, 464.
- 12 M. Huang, Y. Li, J. Liu, X.-B. Lan, Y. Liu, C. Zhao and Z. Ke, *Green Chem.*, 2019, **21**, 219.
- 13 D. M. Sharma and B. Punji, Adv. Synth. Catal., 2019, 361, 3930.
- 14 F.-L. Yang, Y.-H. Wang, Y.-F. Ni, X. Gao, B. Song, X. Zhu and X.-Q. Hao, Eur. J. Org. Chem., 2017, 3481.
- 15 B. Sreedhar, P. S. Reddy and D. K. Devi, J. Org. Chem., 2009, 74, 8806.
- 16 M. Huang, Y. Li, Y. Li, J. Liu, S. Shu, Y. Liu and Z. Ke, Chem. Commun. 2019, 55, 6213.
- 17 J. Li, C. Wang, D. Xue, Y. Wei and J. Xiao, Green Chem. 2013, 15, 2685.
- 18 M. T. Barros, S. S. Dey and C. D. Maycock, Eur. J. Org. Chem. 2013, 742.
- 19 X. Ding, M. Huang, Z. Yi, D. Du, X. Zhu and Y. Wan, J. Org. Chem., 2017, 82, 5416.
- 20 Q. Cao, W. I. Nicholson, A. C. Jones and D. L. Browne, Org. Biomol. Chem., 2019, 17, 1722.
- 21 S. Zhou, Z. Yang, X. Chen, Y. Li, L. Zhang, H. Fang, W. Wang, X. Zhu and S. Wang, *J. Org. Chem.*, 2015, **80**, 6323.
- 22 H.-B. Sun, L. Gong, Y.-B. Tian, J.-G. Wu, X. Zhang, J. Liu, Z. Fu and D. Niu, *Angew. Chem., Int. Ed.,* 2018, **57**, 9456.
- 23 S. Meiries, A. Chartoire, A. M. Z. Slawin and S. P. Nolan, Organometallics, 2012, 31, 3402.
- 24 J. R. Aranzaes, M.-C. Daniel and D. Astruc, Can. J. Chem., 2006, 84, 288.
- 25 Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
- 26 A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378.
- 27 S. F. Nelsen, S. C. Blackstock and Y. Kim, J. Am. Chem. Soc., 1987, 109, 677.
- 28 (a) Y. Fu, L. Liu, H.-Z. Yu, Y.-M. Wang and Q.-X. Guo, J. Am. Chem. Soc., 2005, 127, 7227; (b) A. Noble,
 R. S. Mega, D. Pflästerer, E. L. Myers and V. K. Aggarwal, Angew. Chem., Int. Ed., 2018, 57, 2155.
- 29 A. A. Isse and A. Gennaro, J. Phys. Chem. B, 2010, 114, 7894.

- 30 (a) Y. Zhang, B. Ji, A. Tian and W. Wang, *J. Chem. Phys.*, 2012, **136**, 141101; (b) X. Q. Yan, X. R. Zhao, H. Wang and W. J. Jin, *J. Phys. Chem. B*, 2014, **118**, 1080.
- 31 P. M. J. Szell, S. Zablotny and D. L. Bryce, Nat. Commun., 2019, 10, 916.
- 32 Q.-Y. Chen and Z.-T. Li, J. Chem. Soc. Perkin Trans. 1, 1993, 1705.
- 33 M. A. Cismesia and T. P. Yoon, *Chem. Sci.*, 2015, 6, 5426.

17. NMR Spectra

