Preparation and Characterization of the Enol of Acetamide: 1-Aminoethenol, a High-Energy Prebiotic Molecule

Artur Mardyukov,^[a] Felix Keul,^[a] and Peter R. Schreiner^{[a]*}

Table of Contents

Experimental Procedures	S2
Figure S1	S3
Figure S2	S4
Figure S3	S4
Figure S4	S5
Figure S5	S5
Table S1	S6
References	S6
AE-CCSD(T)/cc-pVTZ optimized structures	S8

Experimental Procedures

Matrix Apparatus Design. For the matrix isolation studies, we used an APD Cryogenics HC-2 cryostat with a closed-cycle refrigerator system, equipped with an inner CsI window for IR measurements. Spectra were recorded with a Bruker IFS 55 FT-IR spectrometer with a spectral range of $4500-400 \text{ cm}^{-1}$ and a resolution of 0.7 cm⁻¹ and UV/Vis spectra were recorded with a JASCO V-670 spectrophotometer (UV/Vis band width of 1.0 nm) equipped with an inner sapphire window. A high-pressure mercury lamp (HBO 200, Osram) with a cut-off filter was used for irradiation.

For the combination of high-vacuum flash pyrolysis with matrix isolation, we employed a small, home-built, water-cooled oven, which was directly connected to the vacuum shroud of the cryostat. The pyrolysis zone consisted of an empty quartz tube with an inner diameter of 8 mm, which was resistively heated over a length of 50 mm by a coaxial wire. The temperature was monitored with a NiCr–Ni thermocouple. Malonamic acid **2** (Sigma-Aldrich) was evaporated (**2**: 70 °C) from a storage bulb into the quartz pyrolysis tube. At a distance of approximately 50 mm, all pyrolysis products were co-condensed with a large excess of argon (typically 60–120 mbar from a 2000 mL storage bulb: circa 50-60 mbar per hour) on the surface of the matrix window at 10 K. Several experiments with pyrolysis temperatures ranging from 200 to 700 °C were performed in order to determine the optimal pyrolysis conditions.

Synthesis of 2. 122 mg (3.05 mmol, 1.00 equiv.) NaOH was dissolved in 10 mL H₂O and 400 mg (3.05 mmol, 1.00 equiv.) ethyl malonate monoamide was added and the resulting mixture was stirred for 3 h under reflux. The solution was cooled to room temperature and acidified with 1 M HCl solution to pH 4. The lyophilization of the mixture at –90 °C gave 2 (314 mg, >99%, quantitative). ¹H-NMR (400 MHz, D₂O): δ /ppm 3.29 (s, CH₂), 3.28 (t, *J* = 2.3 Hz, CHD); ¹³C-NMR (101 MHz, D₂O): δ /ppm 174.00, 173.38, 43.69, 43.65, 43.45, 43.25. Note: due to the acidity of the CH₂ group we observed proton exchange with D₂O. Therefore we observed four signals for this group.

Synthesis of *d*₅**-2.** 100 mg of **2** was dissolved in 3 mL D₂O. After stirring overnight at room temperature, the solvent was removed under reduced pressure. This procedure was repeated 3-5 times. ¹³C-NMR (101 MHz, D₂O): δ /ppm 174.4, 174.3, 43.6.

Computations. All coupled cluster computations were carried out with the CFOUR¹ program package. In general, all electron coupled cluster level of theory² including single, double, and perturbatively included triple excitations [AE-CCSD(T)] utilizing the Dunning correlation consistent split valence basis set cc-pVTZ³ was employed for geometry optimizations and frequency computations. For B3LYP/6-311++G(2d,2p)⁴ computations we used the Gaussian16⁵ program package. The quantum mechanical tunneling computations were carried out using the *Polyrate* computer code that is available at no cost at http://truhlar.chem.umn.edu/content/software.⁶

Figure S1. IR spectra showing the pyrolysis product of **2** with subsequent trapping in an argon matrix at 10 K. (a) IR spectrum of **1** computed at AE-CCSD(T)/cc-pVTZ (unscaled). (b) IR difference spectra showing the photochemistry of **1** after irradiation with $\lambda > 270$ nm in argon at 10 K. Downward bands assigned to **1** disappear while upward bands assigned to **3** and **4** appear after 30 min irradiation time. (c) IR spectrum of **3** computed at AE-CCSD(T)/cc-pVTZ (unscaled).

Figure S2. IR spectra showing the pyrolysis product of d_5 -2 with subsequent trapping in an argon matrix at 10 K. (a) IR spectrum of d_5 -1 computed at AE-CCSD(T)/cc-pVTZ (unscaled). (b) IR difference spectra showing the photochemistry of d_5 -1 after irradiation with $\lambda > 270$ nm in argon at 10 K. Downward bands assigned to d_5 -1 disappear while upward bands assigned to d_5 -3 and d_2 -4 appear after 30 min irradiation time. (c) IR spectrum of d_5 -3 computed at AE-CCSD(T)/cc-pVTZ (unscaled).

Figure S3. Solid line: UV/Vis spectrum of **1** isolated at 10 K in Ar. Dot line: the photochemistry of **1** after irradiation at $\lambda > 270$ nm for 15 min in argon at 10 K. Dashed line: UV/Vis spectrum of **3** isolated at 10 K in Ar. Inset: computed [TD-B3LYP/6-311++G(2d,2p)] electronic transitions for **3** and **4**.

Figure S4. HOMO - LUMO energies of ethylene, and variety of enols computed at the B3LYP/6-311++G(2d,2p) level of theory.

Mada	1	1	d5-1	d5-1	Assignment
woue	Computed ^a	Ar, 10 K ^b	Computed ^a	Ar, 10 K ^b	Assignment
21	3849 (48.1)	3647 (s)	2801 (29.9)	2692 (s)	OH str.
20	3652 (15.2)	3510 (s)	2695 (10.1)	2617 (s)	NH ₂ asym str.
19	3550 (14.5)	3413 (s)	2565 (14.6)	2482 (m)	NH ₂ sym. str.
18	3229 (7.2)	3132 (w)	2407 (2.3)		CH ₂ asym. str.
17	3161 (0.7)	-	2310 (11.7)	2280	CH ₂ sym. str.
16	1732 (279.2)	1682 (s)	1673 (270.7)	1631 (s)	C=C str.
15	1655 (53.5)	1607 (w)	1217 (9)	1197 (w)	NH ₂ bending
14	1477 (6.3)	1452 (m)	1131 (16.9)	1103 (m)	CH ₂ scissoring
13	1438 (47.3)	1398 (m)	1394 (155.8)	1360 (s)	C-O str.
12	1242 (97.6)	1202 (s)	958 (62.5)	920 (m)	OH def.
11	1143 (78.5)	1001 (m)	914 (13.5)	890 (w)	COH in pl. def.
10	997 (4.9)	974 (m)	795 (5.6)	775 (w)	CCH in pl. def.
9	925 (26.8)	916 (m)	840 (13.4)	829 (m)	C-O str. / C-N str.
8	780 (223)	730 (m)	716 (65.9)	692 (m)	NCC out of pl. def.
7	756 (42.6)	727 (m)	594 (28.1)	577 (w)	CH ₂ wagging
6	707 (12.5)	694 (m)	552 (39.8)	552 (m)	CH ₂ twisting
5	617(115.7)	594 (m)	473 (82.9)	465 (m)	C-O wagging
4	513 (10)	500 (w)	456 (7.3)	449 (w)	NOC in pl. def.
3	467 (21.5)	441 (m)	385 (13.9)	-	NCC in pl. def.
2	424 (70.6)	411 (m)	308 (42)	-	O-H wagging
1	276 (44.1)	-	200 (22.3)	-	NH ₂ twisting

Table S1. Experimental (Ar matrix, 10 K) and computed IR frequencies of **1** and d_5 -**1**, peak positions in cm⁻¹, computed infrared intensities (km mol⁻¹) in parentheses.

^aAE-CCSD(T)/cc-pVTZ, harmonic approximation, unscaled frequencies, intensities (in parentheses) in km mol⁻¹. ^b Experiment: argon matrix, 10 K.; approximate relative intensities (w: weak, m: medium, s: strong).

References

[1] CFOUR, **2010**, <u>http://www.cfour.de</u>. J.F. Stanton, J. Gauss, L. Cheng, M.E. Harding, D.A. Matthews, P.G. Szalay with contributions from A.A. Auer, R.J. Bartlett, U. Benedikt, C. Berger, D.E. Bernholdt, S. Blaschke, Y.J. Bomble, S. Burger, O. Christiansen, D. Datta, F. Engel, R. Faber, J. Greiner, M. Heckert, O. Heun, M. Hilgenberg, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, T. Kirsch, K. Klein, G.M. Kopper, W.J. Lauderdale, F. Lipparini, T. Metzroth, L.A. Mück, T. Nottoli, D.P. O'Neill, D.R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, C. Simmons, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J.D. Watts and the integral packages *MOLECULE* (J. Almlöf and P.R. Taylor), *PROPS* (P.R. Taylor), *ABACUS* (T. Helgaker, H.J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen.

[2] a) J. Čížek, *J. Chem. Phys.* **1966**, *45*, 4256-4266; b) R. J. Bartlett, J. D. Watts, S. A. Kucharski, J. Noga, *Chem. Phys. Lett.* **1990**, *165*, 513-522; c) K. Raghavachari, *Annu. Rev. Phys. Chem.* **1991**, *42*, 615-642; d) J. F. Stanton, *Chem. Phys. Lett.* **1997**, *281*, 130-134.

[3] T. H. Dunning, Jr., J. Chem. Phys. 1989, 90, 1007-1023.

[4] a) A. D. Becke, *Phys. Rev. A* **1988**, *38*, 3098-3100; b) A. D. Becke, J. *Chem. Phys.* **1993**, *98*, 5648-5652; c) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* **1988**, *37*, 785-789. d) S. H. Vosko, L. Wilk and M. Nusair, *Can. J. Phys.*, 1980, **58**, 1200. e) R. C. Binning Jr. and L. A. Curtiss, *J. Comput. Chem.*, **11** (1990) 1206-16

[5] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S.

Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

[6] J. Zheng, J. L. Bao, R. Meana-Pañeda, S. Zhang, B. J. Lynch, J. C. Corchado, Y.-Y. Chuang, P. L. Fast, W.-P. Hu, Y.-P. Liu, G. C. Lynch, K. A. Nguyen, C. F. Jackels, A. Fernandez Ramos, B. A. Ellingson, V. S. Melissas, J. Villà, I. Rossi, E. L. Coitiño, J. Pu, T. V. Albu, A. Ratkiewicz, R. Steckler, B. C. Garrett, A. D. Isaacson, and D. G. Truhlar, *Polyrate* version 2017-C (University of Minnesota, Minneapolis, MN, 2017).

AE-CCSD(T)/cc-pVTZ optimized structures (distances in bohr), electronic energies (in hartree) and zero-point vibrational energies (ZPVE).

*anti-***1**: 1-Aminoethenol

01			
6	1.316987603	-0.601746151	-0.010157044
1	1.444004235	-1.673309971	-0.035372377
1	2.196160361	0.024119650	0.044987051
6	0.087370942	-0.060434280	-0.003329160
8	-0.166528805	1.281669446	0.003711935
7	-1.118289881	-0.757196942	0.060182572
1	0.680211601	1.733932295	-0.052757151
1	-1.841807929	-0.298567106	-0.475518819
1	-1.019180633	-1.721970545	-0.215869630
E =	-208.8510944		
ZPV	'E= 0.07427201		

*Syn-***1**: 1-Aminoethenol 0 1

6	1.384870625	-0.427470879	-0.002805692	
1	1.641772193	-1.471522282	-0.102299318	
1	2.168695073	0.307465497	0.094196080	
6	0.103117945	-0.042390580	-0.005854918	
8	-0.241709403	1.281182592	-0.025845562	
7	-1.023452755	-0.887195504	0.052763560	
1	-1.081849338	1.350528027	0.441636166	
1	-1.635188445	-0.737561598	-0.741590076	
1	-0.754339692	-1.860642110	0.088249985	
E =	-208.8498955			
ZPV	'E = 0.074551528	3		
3: a	cetamide			
01				
6	0.046143357	-0.085710347	0.000000000	
8	0.432840695	-1.247545668	0.000000000	
7	0.909976685	0.982917074	0.000000000	
6	-1.437338401	0.284383325	0.000000000	
1	1.906622765	0.792166917	0.000000000	
1	0.589211339	1.941926529	0.000000000	
1	-1.910384173	-0.165190939	0.890961833	
1	-1.623375377	1.373184295	0.000000000	
1	-1.910384173	-0.165190939	-0.890961833	
E =	-208.8891525			
ZPV	'E = 0.073922852			
4 : ke	etene			
01				
8	0.000000000	0.000000000	-1.187699589	
6	0.000000000	0.000000000	-0.020723401	
6	0.000000000	0.000000000	1.297853416	
1	-0.941865752	0.000000000	1.821543060	
1	0.941865752	0.000000000	1.821543060	
E =	-152.3583735			
ΖPV	/E = 0.031634735	5		

5: ketenimine

0 1 1 7 6 1 1 E = - ZPVE	0.811550531 -0.080805138 0.025089309 0.000939454 0.000632166 0.000632166 132.4808658 = = 0.04381128	-1.735064771 -1.243042454 -0.014741079 1.301809217 1.840716104 1.840716104	0.00000000 0.00000000 0.00000000 0.000000
6: ac	etimidic acid		
1 7 6 8 1 6 1 1 1 E = - ZPVE	-1.695067798 -0.693935035 -0.049031468 -0.682044724 -0.018982906 1.451983751 1.847824119 1.813917589 1.813917589 208.8684676 = 0.074219899	-0.992424225 -1.194139888 -0.101727129 1.116191481 1.813018591 -0.052413472 -1.063963639 0.477862021 0.477862021	0.00000000 0.00000000 0.00000000 0.000000
6a : s	<i>yn</i> acetimidic acio	ł	
0 1 1 7 6 8 1 1 1 E = ZPVE	-1.705948656 -0.697683653 -0.050357068 1.446845599 -0.575369046 -1.536608465 1.842098241 1.799047270 1.799047270 208.8696503 = 0.074322368	-1.029232329 -1.196162033 -0.100165289 -0.052401936 1.163662824 1.088650647 -1.064077640 0.486485943 0.486485943	0.00000000 0.00000000 0.00000000 0.000000
Amm 0 1 7 1 1 E = ZPVE	onia 0.070567151 -0.326828241 -0.326828241 -0.326828241 56.47319724 = 0.034550228	0.00000000 0.466495135 -0.932990270 0.466495135	0.00000000 -0.807993275 0.000000000 0.807993275
Wate 0 1 8 1 E = - ZPVE	r 0.000000000 0.00000000 0.00000000 76.33221652 E = 0.02153226	0.000000000 -0.753879329 0.753879329	0.066414153 -0.527020397 -0.527020397

7: 1,1-Ethenediol

01			
1	-0.018795953	1.876089259	0.000000000
8	-0.625977817	1.130191040	0.000000000
6	0.113833334	-0.016309539	0.000000000
8	-0.694721943	-1.098785301	0.000000000
1	-1.600631789	-0.772277128	0.000000000
6	1.448596922	-0.096228935	0.000000000
1	1.926045777	-1.062233251	0.000000000
1	2.050256108	0.799965571	0.000000000
E = -	228,7083740806	697	
—			
TS1			
01			
6	1.278209034	-0.673629139	-0.014949945
1	1.353620903	-1.751835885	-0.010462993
1	2.176444895	-0.077793675	0.014684372
6	0.083316587	-0.068829667	-0.009242255
8	-0.024359701	1.307782903	0.059804729
7	-1.159806614	-0.712044830	0.059225597
1	-0.199332211	1.637097716	-0.826908192
1	-1.899702450	-0.173106663	-0.365114738
1	-1.141117973	-1.656095126	-0.296191656
E = -	208.8436818		
ZPV	E = 0.07313370 ²	1	
TS2			
01			
6	1.130385221	-0.877580877	-0.037290036
1	1.057461919	-1.861699400	-0.492555458
1	1.645437719	-0.883347268	0.922257105

1	1.057461919	-1.001099400	-0.492000400
1	1.645437719	-0.883347268	0.922257105
6	-0.042171056	-0.040567442	0.021119496
8	0.327945238	1.200829376	-0.002327692
7	-1.337193040	-0.362071101	0.003516303
1	-2.030981520	0.354635505	-0.118085781
1	-1.624617552	-1.309633002	0.155952975
1	1.370219352	0.604987991	-0.286943575
E =	-208.7831629		

ZPVE = 0.068711139

TS3 0 1

01			
6	1.530098447	0.062739498	-0.007857107
1	2.217192389	-0.759026985	-0.140958108
1	1.906235921	1.053902101	0.185889813
6	0.211611118	-0.196189486	0.011281768
8	-0.731773563	1.057619534	0.057277325
7	-0.761432863	-1.092642040	-0.039174891
1	-0.688626477	1.490166737	-0.809139092
1	-1.442670957	0.211760897	0.045186392
1	-0.536975930	-2.011474909	0.313521158
E = -	-208.7499644		
ZPV	'E = 0.067686932		

TS4

01

6 -1.099178702 0.918924532 0.019222035

1	-1.536946921	1.034686712	-0.970545355
1	-1.003422608	1.857689179	0.561470317
6	0.029249426	0.013810590	-0.005431793
8	1.346431882	0.264261979	0.003464296
7	-0.441646802	-1.212103291	0.035376351
1	1.457589845	1.206199922	-0.160502481
1	0.114329554	-1.992461723	-0.313008814
1	-1.524540932	-0.564673072	0.171875971
E =	-208.7609226		
7D\	I = -0.069361091		

ZPVE = 0.068361981

TS5

~		
()	1	

0 1			
6	1.505553682	-0.222206771	0.000000000
1	1.825754898	-1.252698240	0.000000000
1	2.242264532	0.566254116	0.000000000
6	0.199013689	0.090987419	0.000000000
8	-0.535902160	1.163247901	0.000000000
7	-0.902539008	-0.955838117	0.000000000
1	-1.437370829	0.131999714	0.000000000
1	-0.940645459	-1.531993986	-0.834627538
1	-0.940645459	-1.531993986	0.834627538
E = -	208.7882989		
ZPV	E = 0.069797975		

TS6 0 1

01			
6	1.109558710	0.893944699	-0.023119262
1	1.646503651	0.907286691	0.922043037
1	1.026978616	1.864632715	-0.501571633
6	-0.025618952	0.025064687	0.016781174
8	-1.314210994	0.393549289	0.022178872
7	0.412946154	-1.227777765	-0.048209175
1	-1.855434635	-0.364512127	-0.229295428
1	-0.113410447	-1.968088851	0.421446223
1	1.508941501	-0.568544200	-0.219315262
E = -	-208.757561		
ZPV	E = 0.068387479)	

S11