Supplementary Information – Experimental Procedures

Arylation of *gem*-Difluoroalkenes Using a Pd/Cu Co-Catalytic System that Avoids β-Fluoride Elimination

Kedong Yuan, Taisiia Feoktistova, Paul Ha-Yeon Cheong,* Ryan A. Altman*

Table of Contents

General Information	S2
Experimental Details	S2
Synthesis of Starting Materials	S2
Synthesis of Difluoroalkenes	S3
General Procedure A: Synthesis of Difluoroalkenes from Aldehydes	S3
General Procedure B: Synthesis of Difluoroalkenes from Alcohols	S3
General Procedure C: Synthesis of Difluoroalkenes from Aryl Iodides	S4
Reaction Optimization	S10
General procedure D: Arylation of Difluoroalkenes	S14
Mechanistic Exploration Experiments	
Control Experiments for Activation of <i>p</i> -Toluenesulfonyl Chloride (2a)	
Control Experiments for 3aa Formation from 1a and 2a	
Radical Scavenger Experiments Study	
References	S32

General Information

Unless otherwise noted, all catalytic reactions were carried out in oven-dried 10 mL glassware with PTFE screwcaps under an atmosphere of N₂. Arylsulfonyl chlorides, CuCl (99.99%), anhydrous Li₂CO₃ (99%) were purchased from commercial sources and used without further purification. Anhydrous 1,4-dioxane (99.8%) was purchased from Sigma-Aldrich and used in a glovebox. Other solvents, N-methyl pyrrolidone (NMP, anhydrous, 99.5%), 1,2-dichloroethane (DCE, anhydrous, 99+%), toluene (anhydrous, 99.8%), m-xylene (anhydrous, \geq 99%) and DMSO (anhydrous) were purchased from commercial sources and used as received. N,N-Dimethylformamide (DMF) was dispensed from a solvent purification system and used in a glovebox. For all difluoroalkene arylation-isomerization reactions, the solid chemicals were weighed under air and solvents were subsequently added under N₂ flow. ¹H NMR spectra were recorded on Bruker AVIIIHD 400 MHz spectrometer, Bruker DRX 500 MHz spectrometer and Bruker Avance AVIII 500 MHz spectrometer, ¹⁹F NMR spectra were recorded on the same spectrometer. Chemical shifts (δ) were reported in parts per million relative to residual chloroform (7.26 ppm for ¹H NMR; 77.0 ppm for ¹³C NMR). ¹⁹F NMR chemical shifts were corrected by using CFCl₃ as internal standard, (0.0 ppm). Coupling constants were reported in Hertz. ¹H NMR assignment abbreviations were the following: singlet (s), broad singlet (bs), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of triplets (dt), and multiplet (m). ¹³C NMR spectra were recorded at 126 MHz on a Bruker Avance AVIII 126 MHz spectrometer and reported in ppm. Uncorrected melting points were measured on a Thomas-Hoover melting point apparatus. Infrared radiation (IR) were performed on a Thermo Scientific Nicolet iS5 Fourier Transform Infrared Spectrometer by using commercial Teflon-tape as sample film support. High-resolution mass analysis was performed by atmospheric-pressure chemical ionization (APCIhexane/PhMe) on a Water Q-Tof PremierTM.

Experimental Details

Synthesis of Starting Materials

Potassium bromodifluoroacetate (BrCF₂COOK):

BrCF₂COOEt + KOH
$$\longrightarrow$$
 BrCF₂COOK BrCF₂COOK

The product was prepared following a previous literature report.¹ To a 1 L round-bottom flask, ethyl bromodifluoroacetate (101 g, 0.500 mol) and MeOH (300 mL) were added sequentially, and the reaction was stirred in an ice bath (0 °C) for 10 min. KOH (28 g, 0.50 mol) was added portion wise. The reaction was then warmed to room temperature and stirred for another 20 h. Upon completion, the solvent was removed in *vacuo* and the product was kept under vacuum overnight to afford the product as a white powder in 97% yield (103.3 g).

Synthesis of Difluoroalkenes

General Procedure A: Synthesis of Difluoroalkenes from Aldehydes

$$R \xrightarrow{H} H \xrightarrow{PPh_3 (1.3 \text{ equiv.})} F \xrightarrow{F} R^{R}$$

The corresponding difluoroalkenes were prepared from aldehydes according to a previous literature report² with a slight modification. A solution of PPh₃ (13.0 mmol, 1.30 equiv.), aldehyde (0.010 mol, 1.0 equiv.) and NMP (6.0 mL, ≈ 1.8 M) was heated to 100 °C and BrCF₂COOK (15.0 mmol, 1.30 equiv.) was added portionwise over 10 min. The reaction vessel was attached to rubber septum connected to an empty balloon to release pressure. After evolution of gas ceased, the reaction stirred for another 30 min. Upon cooling, Et₂O (30 mL) and H₂O (50 mL) were added to the mixture, followed by H₂O₂ (30% aqueous solution, 10 mL). After stirring for 2–3 h, the mixture was filtered and extracted with Et₂O (50 mL × 3). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum. The compounds were purified by silica gel column chromatography using Et₂O/pentane as eluent, affording the corresponding difluoroalkenes

General Procedure B: Synthesis of Difluoroalkenes from Alcohols

$$\begin{array}{c} \mathsf{PCC} & \mathsf{O} \\ \mathsf{DCM}, \text{ r.t.} & \mathsf{R} & \mathsf{H} \end{array} \xrightarrow{\mathsf{PCF}_2\mathsf{COOK} (1.3 \text{ equiv.})} \\ \mathsf{BrCF}_2\mathsf{COOK} (1.5 \text{ equiv.}) \\ \mathsf{NMP}, 100 \,^{\circ}\mathsf{C} \end{array} \xrightarrow{\mathsf{F}} \\ \mathsf{H} \end{array}$$

A 100 mL round-bottom flask was charged with primary alcohol (5.00 mmol, 1.00 equiv.), pyridinium chlorochromate complex (10.0 mmol, 2.00 equiv.) and DCM (20 mL). The reaction was stirred at room temperature and monitored by TLC. After 3–5 h, the reaction mixture was filtered by a short silica gel column and the crude product was used in the next step without further purification.²

A solution of PPh₃ (1.3 equiv.) and freshly prepared aldehyde (1.0 equiv.) in NMP ($\approx 1-1.8$ M) was heated to 100 °C, and BrCF₂COOK (1.5 equiv.) was added portionwise over 10 min. The reaction vessel was attached to a rubber septum connected to an empty balloon to release pressure. After evolution of gas ceased, the reaction was stirred for another 30 min. Upon cooling, Et₂O (30 mL) and H₂O (50 mL) were added to the mixture, followed by H₂O₂ (30% aqueous solution, 5 mL). After stirring for 2–3 h, the mixture was filtered and extracted with Et₂O (30 mL x 3). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum. The compounds were purified by silica gel column chromatography using Et₂O/pentane as eluent, affording the corresponding difluoroalkenes.

General Procedure C: Synthesis of Difluoroalkenes from Aryl Iodides

The aldehydes were prepared according a previous report as linear/branched mixture.³ An oven-dried 100 mL two-neck flask was charged with (hetero)aryl iodides (0.010 mol, 1.0 equiv.), $Pd(OAc)_2$ (67 mg, 0.30 mmol), NaHCO₃ (2.5 g, 0.030 mol), tetrabutylammonium bromide (1.6 g, 5.0 mmol) and DMF (20 mL, 0.5 M), followed by the addition of alcohols (20 mmol, 2.0 equiv.). The mixture was evacuated and backfilled with N₂ (3 times), then stirred in a preheated oil bath at 70 °C for 6 h. Upon completion, the mixture was cooled to room temperature, then washed by Et₂O and H₂O, and dried over Na₂SO₄. The crude mixture was used in the next step without further purification.

A solution of PPh₃ (1.3 equiv.), freshly prepared aldehyde (1.0 equiv.) in NMP (\approx 1–1.8 M) was heated to 100 °C and BrCF₂COOK (1.5 equiv.) was added portionwise over 10 min. The reaction vessel was attached to a rubber septum connected to an empty balloon to release pressure. After evolution of gas ceased, the reaction stirred for another 30 min. Upon cooling, Et₂O (30 mL) and H₂O (50 mL) were added to the mixture, followed by H₂O₂ (30% aqueous solution, 5 mL). After stirring for 2–3 h, the mixture was filtered and extracted with Et₂O (30 mL x 3). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum. The compounds were purified by silica gel column chromatography using Et₂O/pentane as eluent, to afford the corresponding difluoroalkenes.

(4,4-difluorobut-3-en-1-yl)benzene¹ (1a)

Compound **1a** was prepared according to general procedure A on a 60 mmol scale. 3-Phenylpropionaldehyde (5.20 g, 60.0 mmol) and PPh₃ (20.4 g, 78.0 mmol) were placed in an oven-dried 250 mL two neck round-bottom flask connected to reflux condenser. Anhydrous NMP (\approx 1.7 M solution, 35 mL) was then added to the flask, and the reaction mixture was stirred in a preheated oil bath at 100 °C under N₂ atmosphere for 3–5 minutes until it became a clear solution. To this solution, BrCF₂COOK (90 mmol, 19.2 g) was added portion wise over 20 min, and the reaction was allowed to stir for another 30 min after gas evolution ceased. Upon cooling, Et₂O (100 mL) and H₂O (150 mL) were poured into the mixture, followed by addition of H₂O₂ (30% aqueous solution, 50 mL). After stirring for 2–3 h, the mixture was filtered and extracted with Et₂O (100 mL x 3). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum. The compounds were purified by silica gel column chromatography using pentane (Rf \approx 0.8) as eluent, affording **1a** as colorless oil in 53% yield, 5.3 g.

¹H NMR (400 MHz, CDCl₃) δ 7.29 (td, J = 8.3, 6.7 Hz, 2H), 7.24–7.14 (m, 3H), 4.14 (dtd, J = 25.5, 7.8, 2.2 Hz, 1H), 2.67 (t, J = 7.6 Hz, 2H), 2.34–2.23 (m, 2H). Spectral data of **1a** matched literature report.¹

1-bromo-4-(4,4-difluorobut-3-en-1-yl)benzene⁴ (1b)

Compound **1b** was prepared according to general procedure B on a 5 mmol scale from 3-(4-bromophenyl)propan-1-ol (1.07 g, 1.00 equiv.). Purification by silica gel column chromatography using pentane as eluent (Rf \approx 0.5) afforded **1b** as colorless oil in 31% yield after two steps, 375 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.3 Hz, 2H), 7.05 (d, *J* = 8.4 Hz, 2H), 4.12 (dtd, *J* = 25.3, 7.8, 2.4 Hz, 1H), 2.64 (t, *J* = 7.6 Hz, 2H), 2.28 (qt, *J* = 7.5, 1.8 Hz, 2H). Spectral data of **1b** matched literature report.⁴

1-chloro-3-(4,4-difluorobut-3-en-1-yl)benzene (1c)

Compound 1c was prepared according to general procedure B on a 10 mmol scale from 3-(3-chlorophenyl)propan-1-ol (1.70 g, 1.00 equiv.). Purification by silica gel column chromatography using pentane as eluent (Rf \approx 0.5) afforded 1c as colorless oil in 41% yield after two steps, 832 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.25–7.16 (m, 3H), 7.06 (dd, J = 7.0, 1.6 Hz, 1H), 4.14 (dddd, J = 25.3, 8.5, 7.2, 2.2 Hz, 1H), 2.67 (t, J = 7.6 Hz, 2H), 2.45–2.21 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –89.00 (dd, J = 46.2, 11.1 Hz), –91.09 (ddd, J = 46.7, 25.2, 15.8 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 155.2 (dd, J = 287.6, 285.6 Hz), 142.9, 134.2, 129.7, 128.5, 126.6, 126.4, 76.9 (dd, J = 34.5, 32.5 Hz), 35.3 (t, J = 2.7 Hz), 23.8 (d, J = 4.8 Hz); HRMS (ESI, m/z): calcd. for C₁₀H₁₀ClF₂ [M+H]⁺ = 203.0439, found 203.0433. IR (film): 2932, 2865, 1747, 1598, 1573, 1476, 1305, 1216, 1158, 1081, 905, 780 cm⁻¹.

1-(4,4-difluorobut-3-en-1-yl)-2-methylbenzene (1d)

Compound 1d was prepared according to general procedure B on a 10 mmol scale from 3-(o-tolyl)propan-1-ol (1.50 g, 1.00 equiv.). Purification by silica gel column chromatography using pentane as eluent (Rf \approx 0.5) afforded 1d as colorless oil in 54% yield after two steps, 982 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.20–7.08 (m, 4H), 4.21 (dtd, J = 25.4, 7.9, 2.5 Hz, 1H), 2.69 (dd, J = 9.0, 6.7 Hz, 2H), 2.33 (s, 3H), 2.31–2.22 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –89.54 (dd, J = 47.4, 2.3 Hz), –91.66 (dd, J = 47.3, 25.4 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 156.4 (dd, J = 285.2, 287.5 Hz), 139.1, 135.9, 130.3, 128.8, 126.3, 126.0, 77.5 (dd, J = 20.8, 21.9 Hz), 33.0 (t, J = 2.8 Hz), 22.8 (d, J = 4.7 Hz), 19.2; HRMS: (ESI, m/z): calcd. for C₁₁H₁₃F₂ [M+H]⁺ = 183.0985, found 183.0976. IR (film) 2950, 2869, 1747, 1493, 1460, 1308, 1220, 1159, 997, 749 cm⁻¹.

ethyl 3-(4,4-difluorobut-3-en-1-yl)benzoate (1e)

Compound **1e** was prepared according to general procedure C on a 5 mmol scale from ethyl 3-iodobenzoate (1.38g, 1.00 equiv.) and allyl alcohol. Purification by silica gel column chromatography using Et_2O /pentane as eluent (10%, $Rf \approx 0.4$) afforded **1e** as colorless oil in 55% yield after two steps, 659 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.89 (td, *J* = 4.7, 1.7 Hz, 1H), 7.87 (d, *J* = 1.7 Hz, 1H), 7.39–7.34 (m, 2H), 4.38 (q, *J* = 7.1 Hz, 2H), 4.14 (dtd, *J* = 25.3, 7.8, 2.5 Hz, 1H), 2.74 (t, *J* = 7.6 Hz, 2H), 2.32 (qt, *J* = 7.5, 1.8 Hz, 2H), 1.40 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ –88.60 (d, *J* = 46.3 Hz), –90.65 (dd, *J* = 46.3, 25.2 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 166.7, 156.4 (dd, *J* = 285.2, 287.5 Hz), 141.1, 132.9, 130.6, 129.4, 128.4, 127.4, 77.0 (t, *J* = 20.6 Hz), 60.9, 35.4 (t, *J* = 2.6 Hz), 23.9 (d, *J* = 4.7 Hz), 14.3. HRMS (ESI, m/z): calcd. for C₁₃H₁₅F₂O₂ [M+H]⁺ = 241.1040, found 241.1031. IR (film): 2983, 1714, 1588, 1445, 1367, 1286, 1106, 751 cm⁻¹.

3-(4,4-difluorobut-3-en-1-yl)benzo[b]thiophene (1f)

Compound **1f** was prepared according to general procedure C on a 4 mmol scale from 3-iodobenzo[b]thiophene (1.04 g, 1.00 equiv.) and allyl alcohol. Purification by silica gel column chromatography using pentane as eluent (Rf \approx 0.5) afforded **1f** as colorless oil in 30% yield after two steps, 270 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.87 (dq, *J* = 7.6, 1.0 Hz, 1H), 7.74 (dq, *J* = 8.2, 1.0 Hz, 1H), 7.50–7.31 (m, 2H), 7.12 (s, 1H), 4.25 (dtdd, *J* = 25.4, 7.8, 2.4, 1.0 Hz, 1H), 2.93 (t, *J* = 7.6 Hz, 2H), 2.78–2.35 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –88.57 (d, *J* = 46.5 Hz), –90.57 (dd, *J* = 46.4, 25.3 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 156.4 (dd, *J* = 286.6, 287.63 Hz), 140.5, 138.7, 135.3, 124.2, 123.9, 122.9, 121.5, 121.4, 77.5 (t, *J* = 20.6 Hz), 28.4 (t, *J* = 2.8 Hz), 22.0 (d, *J* = 4.6 Hz). HRMS (ESI, m/z): calcd. for C₁₂H₁₁F₂S [M+H]⁺ = 225.0550, found 225.0536. IR (film): 3069, 2927, 2863, 1732, 1427, 1301, 1162, 1012, 944, 7131 cm⁻¹.

4-(4,4-difluoro-2-methylbut-3-en-1-yl)-1,1'-biphenyl (1g)

Compound **1g** was prepared according to general procedure C on a 10 mmol scale from 4-iodo-1,1'-biphenyl (2.80 g, 1.00 equiv.) and β -methyl allyl alcohol. Purification by silica gel column chromatography using pentane as eluent (Rf \approx 0.5) afforded **1g** as colorless oil in 47% yield for two steps, 1.21 g.

¹H NMR (400 MHz, CDCl₃) δ 7.64 (dd, *J* = 8.3, 1.3 Hz, 2H), 7.57 (d, *J* = 8.2 Hz, 2H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.41–7.35 (m, 1H), 7.26 (d, *J* = 8.2 Hz, 2H), 4.12 (ddd, *J* = 25.4, 9.3, 3.0 Hz, 1H), 2.79–2.72 (m, 1H), 2.71 (m, 2H), 1.12 (d, *J* = 6.7 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ –90.19 (dd, *J* = 48.7, 3.0 Hz), –90.95 (dd, *J* = 48.5, 25.4 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 155.8 (dd, *J* = 285.8, 287.4 Hz), 141.0, 139.0, 138.9, 129.5, 128.7, 127.1, 127.0, 126.9, 83.3 (t, *J* = 19.9 Hz), 43.2 (t, *J* = 2.4 Hz), 30.1 (d, *J* = 5.0 Hz), 20.7 (t, *J* = 2.6 Hz). HRMS (ESI, m/z): calcd. for C₁₇H₁₇F₂ [M+H]⁺ = 259.1298, found 259.1289. IR (film): 3028, 2964, 1747, 1599, 1486, 1376, 1293, 1220, 1170, 1008, 973, 761 cm⁻¹.

5-(4,4-difluoro-2-methylbut-3-en-1-yl)benzo[d][1,3]dioxole (1h)

Compound **1h** was prepared according to general procedure A on a 20 mmol scale from 3-(benzo[d][1,3]dioxol-5-yl)-2-methylpropanal (3.84 g, 1.00 equiv.). Purification by silica gel column chromatography using Et₂O/pentane as eluent (2%, Rf \approx 0.3) afforded **1h** as colorless oil in 51% yield, 2.30 g.

¹H NMR (400 MHz, CDCl₃) δ 6.73 (d, *J* = 7.9 Hz, 1H), 6.64 (d, *J* = 1.7 Hz, 1H), 6.59 (dd, *J* = 7.9, 1.7 Hz, 1H), 5.93 (s, 2H), 4.02 (ddd, *J* = 25.6, 9.4, 3.0 Hz, 1H), 2.64–2.55 (m, 1H), 2.53 (m, 2H), 1.03 (d, *J* = 6.6 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ –89.68 (dd, *J* = 48.8, 2.9 Hz), -90.58 (dd, *J* = 48.7, 25.6 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 158.0 (dd, 285.4, 287.2 Hz), 147.4, 145.8, 133.6, 121.9, 109.4, 107.9, 100.7, 83.3 (t, *J* = 20.0 Hz), 43.3 (t, *J* = 2.4 Hz), 30.3 (d, *J* = 5.0 Hz), 20.6 (t, *J* = 2.5 Hz). HRMS (ESI, m/z): calcd. for C₁₂H₁₂F₂O₂ [M]⁺ = 226.0805, found 226.0800. IR (film): 2964, 1739, 1489, 1441, 1360, 1243, 1040, 930, 806 cm⁻¹.

(4-(difluoromethylene)cyclohexyl)benzene (1i)

Compound **1i** was prepared according to general procedure A with slight modification on a 20 mmol scale from 4-phenylcyclohexan-1-one (3.48 g, 1.00 equiv.). Purification by silica gel column chromatography using pentane as eluent ($Rf \approx 0.5$) afforded **1i** as colorless oil in 19% yield, 791mg.

¹H NMR (500 MHz, CDCl₃) δ 7.37–7.33 (m, 3H), 7.25 (ddd, J = 7.8, 5.7, 1.7 Hz, 2H), 2.64 (ddt, J = 12.1, 8.8, 3.4 Hz, 3H), 2.13–1.86 (m, 4H), 1.56 (qd, J = 12.1, 11.4, 3.7 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ –99.02 (t, J = 4.5 Hz). ¹³C NMR (151 MHz, CDCl₃) δ 150.8 (t, J = 280.9 Hz), 146.4, 128.4, 126.7, 126.2, 87.1 (t, J = 18.9 Hz), 43.9, 33.7 (t, J = 2.1 Hz), 24.5 (t, J = 1.8 Hz). HRMS (ESI, m/z): calcd. for C₁₃H₁₄F₅ [M]⁺ = 208.1064, found 208.1057. IR (film): 2968, 2928, 1759, 1452, 1272, 1212, 1158, 1070, 757, 699 cm⁻¹.

(7,7-difluorohept-6-en-1-yl)benzene ⁵(1j)

Compound 1j was prepared according to general procedure B on a 6.5 mmol scale from 6-phenylhexan-1-ol (1.16 g, 1.00 equiv.). Purification by silica gel column chromatography using pentane as eluent (Rf \approx 0.8) afforded 1j as colorless oil in 63% yield after two steps, 860 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.32–7.27 (m, 2H), 7.19 (td, J = 5.7, 5.3, 2.8 Hz, 3H), 4.13 (dtd, J = 25.6, 7.9, 2.6 Hz, 1H), 2.67–2.54 (m, 2H), 1.98 (tdd, J = 7.5, 5.3, 1.9 Hz, 2H), 1.70–1.58 (m, 2H), 1.47–1.33 (m, 4H). Spectral data of **1**j matched literature report.⁵

1-(7,7-difluorohept-6-en-1-yl)-4-(trifluoromethoxy)benzene (1k)

Compound 1k was prepared according to general procedure C on a 10 mmol scale from 1-iodo-4-

(trifluoromethoxy)benzene (2.88 g, 1.00 equiv.) and hex-5-en-1-ol (2.0 g, 2.00 equiv.). Purification by silica gel column chromatography using pentane as eluent (Rf \approx 0.6) afforded **1k** as colorless oil in 25% yield (containing \approx 14% branched isomer) after two steps, 735 mg.

¹H NMR (500 MHz, CDCl₃) δ 7.18 (d, *J* = 8.6 Hz, 2H), 7.13 (d, *J* = 8.6 Hz, 2H), 4.11 (dtd, *J* = 25.5, 7.9, 2.7 Hz, 1H), 2.64–2.51 (m, 2H), 2.06–1.89 (m, 2H), 1.69–1.57 (m, 2H), 1.47–1.32 (m, 4H). ¹⁹F NMR (471 MHz, CDCl₃) δ –58.45, –90.09 (dd, *J* = 49.4, 2.3 Hz), –92.54 (ddt, *J* = 49.4, 25.7, 2.3 Hz). ¹³C NMR (151 MHz, CDCl₃) δ 156.3 (dd, *J* = 286.6, 284.5 Hz), 147.3, 141.3, 129.5, 120.8, 120.5 (q, *J* = 256.4 Hz), 77.7 (t, *J* = 21.2 Hz), 35.2, 31.1, 29.2 (t, *J* = 2.3 Hz), 28.4, 22.0 (d, *J* = 4.0 Hz). HRMS (ESI, m/z): calcd. for C₁₄H₁₅F₅O [M]⁺ = 294.1043, found 294.1032. IR (film): 2936, 1750, 1509, 1463, 1243, 1019, 811 cm⁻¹.

3-(7,7-difluorohept-6-en-1-yl)-2H-chromen-2-one (11)

Compound **11** was prepared according to general procedure C on a 10 mmol scale from 3-iodo-2H-chromen-2one (2.72 g, 1.00 equiv.) and hex-5-en-1-ol (2.0 g, 2.0 equiv.). Purification by silica gel column chromatography using Et₂O/pentane as eluent (3%, Rf \approx 0.5) afforded **11** as colorless oil in 31% yield after two steps, 862 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (s, 1H), 7.39–7.34 (m, 2H), 7.23 (d, *J* = 8.2 Hz, 1H), 7.20–7.13 (m, 1H), 4.05 (dtd, *J* = 25.6, 7.9, 2.7 Hz, 1H), 2.51–2.46 (m, 2H), 1.91 (dt, *J* = 7.6, 1.9 Hz, 2H), 1.69–1.49 (m, 2H), 1.34 (dt, *J* = 7.4, 3.0 Hz, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ –89.50 (d, *J* = 48.9 Hz), –91.90 (dd, *J* = 49.0, 25.5 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 161.7, 155.1 (dd, *J* = 287.0, 284.8 Hz), 153.1, 138.4, 130.5, 129.8, 127.1, 124.2, 119.5, 116.3, 77.8 (t, *J* = 21.3 Hz), 30.8, 29.1 (t, *J* = 2.6 Hz), 28.5, 27.7, 22.0 (d, *J* = 4.2 Hz). HRMS (ESI, m/z): calcd. for C1₆H₁₂F₂ O₂ [M+H]⁺ = 279.1197, found 279.1195. IR (film): 2965, 2928, 1749, 1710, 1207, 1151, 758 cm⁻¹.

6-chloro-1,1-difluorohex-1-ene⁶(1m)

Compound **1m** was prepared according to general procedure A on a 20 mmol scale from 5-chloropentanal (2.40 g, 1.0 equiv.). Purification by silica gel column chromatography using pentane as eluent (Rf \approx 0.6) afforded **1m** as colorless oil in 45% yield, 1.40 g.

¹H NMR (500 MHz, CDCl₃) δ 4.13 (dt, J = 25.3, 8.1 Hz, 1H), 3.41 (q, J = 6.9, 5.4 Hz, 2H), 2.02 (q, J = 7.7 Hz, 2H), 1.88 (m, 2H), 1.53 (t, J = 7.6 Hz, 2H). HRMS (ESI, m/z): calcd. for C₆H₁₀ClF₂ [M+H]⁺ = 155.0439, found 155.0433.

1,1-difluoro-4,6,6-trimethylhept-1-ene (1n)

Compound **1n** was prepared according to general procedure A on a 20 mmol scale from 3,5,5-trimethylhexanal. Purification by silica gel column chromatography using pentane as eluent (Rf \approx 0.5) afforded **1n** as colorless oil in 84% yield, 2.97 g.

¹H NMR (500 MHz, CDCl₃) δ 4.12 (dtd, J = 25.5, 8.0, 2.8 Hz, 1H), 1.95 (dddd, J = 14.0, 7.9, 6.0, 1.7 Hz, 1H), 1.82 (dtd, J = 14.1, 7.6, 1.7 Hz, 1H), 1.65–1.49 (m, 1H), 1.21 (dd, J = 14.0, 3.7 Hz, 1H), 1.05 (dd, J = 14.0, 6.4 Hz, 1H), 0.92 (d, J = 6.7 Hz, 3H), 0.89 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ –89.15 (dd, J = 48.6, 2.6 Hz), – 91.78 (dd, J = 48.7, 25.3 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 156.6 (dd, J = 284.5, 286.8 Hz), 50.2, 31.6, 31.5, 31.0, 29.9, 29.6 (t, J = 2.5 Hz), 22.1. HRMS (ESI, m/z): calcd. for C₁₀H₁₈F₂[M+H]⁺ = 177.1455, found 177.1645. IR (film): 2956, 1743, 1468, 1365, 1250, 1206, 922, 797 cm⁻¹.

(8R,9S,10S,13R,14S,17R)-3-(difluoromethylene)-10,13-dimethyl-17-((R)-6-methylheptan-2yl)hexadecahydro-1H-cyclopenta[a]phenanthrene ⁷ (10)

Compound **10** was prepared according to previous report on 7.8 mmol scale. To an oven-dried 250 ml Schlenk reaction flask, (8R,9S,10S,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)hexadecahydro-3H-cyclopenta[a]phenanthren-3-one (3.01 g, 7.80 mmol), PPh₃ (6.13 g, 23.4 mmol), LiI (2.09 g, 15.6 mmol), were added under a stream of N₂. The reaction flask was then transferred in a glovebox, and DMF (anhydrous, 30 mL) and toluene (anhydrous, 70 mL) were added. Subsequently, TMSCF₃ (2.77 g, 19.5 mmol) was injected into the reaction flask under N₂ and the flask was stirred in a preheated 45 °C oil bath for 50 h. Upon cooling, the mixture was stirred with a solution of H₂O₂ (30% aqueous, 10 mL) for 3 h, and the reaction was extracted with Et₂O (60 mL x 3) and water (100 mL). The combined organic layers were dried over Na₂SO₄ and concentrated in *vacuo*. Purification by silica gel column chromatography using pentane as eluent (Rf ≈ 0.9) afforded the desired product **10** as colorless solid in 44 % yield, 1.44 g.

¹H NMR (400 MHz, CDCl₃) δ 2.27 (d, *J* = 14.9 Hz, 2H), 2.03 (d, *J* = 14.7 Hz, 2H), 1.97 (dt, *J* = 12.6, 3.4 Hz, 2H), 1.93–1.42 (m, 7H), 1.42–0.93 (m, 18H), 0.90 (d, *J* = 6.4 Hz, 3H), 0.86 (dd, *J* = 6.7, 1.8 Hz, 6H), 0.82 (d, *J* = 0.6 Hz, 3H), 0.65 (s, 3H). Spectral data of **10** matched literature report.⁷

Reaction Optimization

Table S1. Metal Complex Screening ^a

1a 1.0 ec	F +	ClO ₂ S 2a 1.5 equiv.	5 mol% [M] CuBr (1.2 equiv.) Li ₂ CO ₃ (2 equiv.) 1,4-dioxane, 0.2 M 120 °C, 24 h	F F 3aa Me F F 4	Me
	Entry	Catalyst [M]	Conv. (%)	Yield (%) ^b	
	1	PdCl ₂	78	38	
	<u>2</u>	$Pd(OAc)_2$	<u>86</u>	<u>57</u>	
	3	Pd(TFA) ₂	83	55	
	4	$Pd_2(dba)_3$	76	21	
	5	PdCl ₂ (dppf)	75	45	
	6	NiCl ₂ (dme)	<5	0	
	7	Rh ₂ (OAc) ₄	<5	0	
	8	PdCl ₂ (PPh ₃) ₂	84	49	

^{*a*} Conditions: **1a**, 0.10 mmol; **2a**, 0.15 mmol; CuBr, 0.12 mmol; Li₂CO₃, 0.20 mmol; 0.50 mL 1,4-dioxane, N₂, reflux at 120 °C for 24 h. [M] (5 mol%) indicates dimeric [M] (2.5 mol%) and Monomeric [M] (5 mol%). ^{*b*} Yields were determined by ¹⁹F NMR using 0.10 mmol α, α, α -trifluorotoluene as internal standard. 4-Bromotoluene, diarylation products **4** (mixtures) were observed as major byproducts.

Table S2. Co-catalysts and Substrates Ratio Screening^a

9	CuBr ₂	1:1.5	25	15
10	Cu(0)	1:1.2	74	48
11	FeCl ₂	1:1.2	52	<10
12	Ag(OTf)	1:1.2	0	0
13	Ag(TFA)	1:1.2	0	0
14	CuTc	1:1.5	52	32

^{*a*} Conditions: **1a**, 0.10 mmol; Pd(OAc)₂, 0.0050 mmol; Li₂CO₃, 0.20 mmol; 0.50 mL 1,4-dioxane, N₂, reflux at 120 °C. ^{*b*} Yields was determined by ¹⁹F NMR using 0.10 mmol α, α, α -trifluorotoluene as internal standard. 4-Bromotoluene, mixture of diarylation products **4** were observed as major byproducts.

Table S3. Organic Solvent Screening^a

	F + CIO ₂ S 1a 2a 1.0 equiv. 1.1 eq	Me <u>5</u> C L uiv.	<u>mol% Pd(OAc)</u> CuBr (1.2 equiv.) i ₂ CO ₃ (2 equiv.) Solvent, 0.2 M 24 h	F 3a Me F 4	F F
Entry	Solvent	T (°C)	Conc.(M)	Conv. (%)	Yield (%) ^b
1	1,2-Dichloroethane	110	0.2	21	<5
2	Cyclohexane	110	0.2	15	trace
3	1,2-Dimethoxyethane	110	0.2	43	25
4	Toluene	120	0.2	<10	trace
5	o-Xylene	120	0.2	<5	trace
6	DMF	120	0.2	<10	<5
7	DMSO	120	0.2	0	0
8	<u>1,4-Dioxane</u>	<u>120</u>	<u>0.2</u>	<u>84</u>	<u>62</u>
9	Diglyme	120	0.2	56	18
10	Diglyme	130	0.5	97 ^c	20

^{*a*} Conditions: **1a**, 0.10 mmol; **2a**, 0.11 mmol; Pd(OAc)₂, 0.0050 mmol; CuBr, 0.12 mmol; Li₂CO₃, 0.20 mmol; 0.50 mL solvent, N₂, reflux for 24 h. ^{*b*} Yields was determined by ¹⁹F NMR using 0.10 mmol α, α, α -trifluorotoluene as internal standard. 4-Bromotoluene, mixture of diarylation products **4** were observed as major byproducts. ^{*c*} **1a** was decomposed.

Table S4. Inorganic Base Screening^a

Entry	Base	Conv. (%)	Yield (%) ^b
1	LiOAc	85	56
2	NaOAc	44	8
3	K_2CO_3	17	5
4	Na ₂ CO ₃	31	7
5	Cs_2CO_3	8	<5
<u>6</u>	$\underline{\text{Li}_2\text{CO}_3}$	<u>87</u>	<u>64</u>
7	K_3PO_4	32	11
8	KH ₂ PO ₄	38	12
9 ^c	0	12	0

^{*a*} Conditions: **1a**, 0.10 mmol; **2a**, 0.11 mmol; Pd(OAc)₂, 0.0050 mmol, CuBr, 0.12 mmol; Base, 0.20 mmol; 0.50 mL 1,4-dioxane, N₂, reflux at 120 °C. ^{*b*} Yields was determined by ¹⁹F NMR using 0.10 mmol α, α, α -trifluorotoluene as internal standard. 4-bromotoluene, mixture of diarylation products **4** were observed as major byproducts. ^{*c*} No Base.

Table S5. Pd, Cu Loading Screening ^a

4

	$\mathbf{D}d(\mathbf{O}\mathbf{A}\mathbf{a})$	CuPr		Conv	
Entry	ru(OAC) ₂	CuBi	T (°C)	Conv.	Yield $(\%)^{b}$
	(X mol%)	(Y equiv.)	- (-)	(%)	()
1	5	0.05	120	70	12
2	5	0.1	120	47	30
3	5	0.5	120	65	39
4	5	0.8	120	76	44
<u>5</u>	<u>5</u>	<u>1.2</u>	<u>120</u>	<u>88</u>	<u>68</u>
6	5	2.0	120	87	56
7	2.5	1.2	120	38	15
<u>8</u>	<u>5</u>	<u>1.2</u>	<u>130</u>	<u>85</u>	<u>67</u>
9	7.5	1.2	120	81	60
10	10	1.2	120	79	61
11	10	1.2	130	88	44
<u>12</u>	<u>5</u>	<u>(CuCl) 1.2</u>	<u>120</u>	<u>89</u>	<u>66</u>
<u>13</u>	<u>5</u>	<u>(CuCl) 1.2</u>	<u>110</u>	<u>93</u>	<u>68</u>
14	5	(CuCl) 1.2	100	35	<10

^a Conditions: 1a, 0.10 mmol; 2a, 0.11 mmol; Li₂CO₃, 0.20 mmol; 0.50 mL 1,4-dioxane, N₂, reflux for 24 h. ^b Yields was determined by ¹⁹F NMR using

0.10 mmol a, a, a-trifluorotoluene as internal standard. 4-bromotoluene, mixture of diarylation products were observed 4 as major byproducts.

Table S6. Ratio of 1a:2a Screening^a

^{*a*} Conditions: **2a**, 0.20 mmol; Li₂CO₃, 0.40 mmol; 0.50 mL 1,4-dioxane, N₂, reflux for 24 h. ^{*b*} Conversion based on **2a**. ^{*c*} Yields was determined by ¹⁹F NMR using 0.10 mmol α, α, α -trifluorotoluene as internal standard, isolated yields are given in parentheses. Mixture of diarylation products **4** (<20%) were observed as major byproducts.

. .

Table S7. Ligand/Additives and Substrate Ratio Screening^a

	F + F ClO ₂ : 1a 1.5 equiv.	S Me 2a 1.0 equiv.	5 mol% P Ligands/A CuCl (1.: Li ₂ CO ₃ (i 1,4-dioxar 24	d(OAc) ₂ dditives 2 equiv.) 2 equiv.) he, 0.4 M h	F Sa Me F 4	F Me
Entry	Ligands/Additives	Loading	1a:2a	T (°C)	Conv. (%)	Yield (%) b
1	P(o-Tolyl) ₃	10 mol%	1.5:1	110	100	48
2	P(p-Tolyl) ₃	10 mol%	1.5:1	110	100	50
3	DPE-Phos	5 mol%	1.5:1	110	100	39
4	Xantphos	5 mol%	1.5:1	110	100	42
5	CyJohnPhos	10 mol%	1.5:1	110	100	41
6	PCy ₃	10 mol%	1.5:1	110	100	40
7	SIMes•Cl	10 mol%	1.5:1	110	100	51
8	SIPr•Cl	10 mol%	1.5:1	110	100	51
9	TBAF•3H ₂ O	20 mol%	2:1	120	100	28
10	BzEt ₃ NCl	20 mol%	2:1	120	100	37
11	2,2'-bipyridine	5 mol%	1:1.2	120	0	0
12	1,10-Phen	5 mol%	1:1.2	120	<	21
13 ^c	CuBr	-	1.5:1	110	100	43

14	CuCl	-	1.5:1	110	100	45
15^{d}	SIPr•Cl	10 mol%	2.25:1	120	100	76(72)
16	SIMes•Cl	10 mol%	1.75:1	115	100	51
17	SIPr•Cl	10 mol%	1.75:1	115	100	64

^{*a*} Conditions: **1a**, 0.30 mmol; **2a**, 0.20 mmol; Pd(OAc)₂, 0.010 mmol; Li₂CO₃, 0.40 mmol; 0.50 mL 1,4-dioxane, N₂, reflux for 24 h. ^{*b*} Yields was determined by GC analysis using 20 μ L of dodecane as internal standard. Mixture of diarylation products **4** (<10%) were observed as major byproducts. ^{*c*} No ligand or additives. ^{*d*} The reaction was performed on 0.50 mmol of **2a** in 1.5 mL of 1,4-dioxane for 21 h, isolated yields are given in parentheses.

General procedure D: Arylation of Difluoroalkenes

To an oven-dried 10 ml glass reaction tube, $Pd(OAc)_2$ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li_2CO_3 (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), Ar-SO₂Cl (0.50 mmol, 1.0 equiv.) and difluoroalkene (1.125 mmol, 2.25 equiv.) were added sequentially. The reaction tube was then transferred in a glovebox, in which anhydrous 1,4-dioxane (1.5 mL) was added. The reaction tube was then sealed under a N_2 atmosphere and stirred in a preheated 120 °C oil bath for 21 h. Upon cooling, the mixture was filtered through a short silica gel column for GC, GC-MS and crude ¹⁹F NMR analysis. Then the combined filtrate was concentrated under vacuo and purified by silica gel column chromatography using Et₂O/pentane as eluent to afford the desired products.

(E)-1-(1,1-difluoro-4-phenylbut-3-en-1-yl)-4-methylbenzene (3aa)

Compound **3aa** was prepared according to general procedure D using *para*-toluenesulfonyl chloride (95.5 mg, 0.500 mmol), **1a** (189 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using pentane (Rf \approx 0.3) as eluent afforded **3aa** as a colorless solid in 72% yield, 93 mg. Melting point: 65.0–68.2 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.1 Hz, 2H), 7.37–7.34 (m, 2H), 7.33–7.31 (m, 2H), 7.27 (td, *J* = 3.2, 2.8, 1.4 Hz, 2H), 7.24 (d, *J* = 1.4 Hz, 1H), 6.51 (dt, *J* = 15.9, 1.5 Hz, 1H), 6.14 (dt, *J* = 15.9, 7.3 Hz, 1H), 3.07 (tdd, *J* = 15.6, 7.3, 1.4 Hz, 2H), 2.41 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ –94.60 (t, *J* = 15.6 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 139.7 (t, *J* = 2.1 Hz), 136.9, 135.1, 134.2 (dt, *J* = 26.7 Hz), 129.0, 128.5, 127.6, 126.3, 124.9 (t, *J* = 6.4 Hz), 122.0 (t, *J* = 242.8 Hz), 120.5 (d, *J* = 5.3 Hz), 43.1 (t, *J* = 29.4 Hz), 21.2. HRMS (ESI, m/z): calcd. for C₁₇H₁₆F₂ [M]⁺ = 258.1220, found 258.1233. IR (film): 3027, 2917, 1447, 1212, 1151, 1096, 979, 763 cm⁻¹.

(E)-1-bromo-4-(1,1-difluoro-4-phenylbut-3-en-1-yl)benzene (3ab)

Compound **3ab** was prepared according to general procedure D using 4-bromobenzenesulfonyl chloride (128 mg, 0.500 mmol), **1a** (189 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica

gel column chromatography using pentane (Rf \approx 0.3) as eluent afforded **3ab** as a white solid in 76% yield, 122 mg. Melting point: 83.6–84.8 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.7 Hz, 2H), 7.38 (d, *J* = 8.6 Hz, 2H), 7.35–7.31 (m, 3H), 7.27–7.25 (m, 1H) 6.46 (d, *J* = 15.9 Hz, 1H), 6.05 (ddd, *J* = 11.0, 10.1, 5.0 Hz, 1H), 3.02 (tdd, *J* = 15.5, 7.3, 1.3 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –95.30 (t, *J* = 15.4 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 136.6, 136.1 (t, *J* = 27.0 Hz), 135.7, 131.6, 128.6, 127.8, 126.9 (t, *J* = 6.4 Hz), 126.3, 124.2 (t, *J* = 2.7 Hz), 122.5 (t, *J* = 243.5 Hz), 119.6 (t, *J* = 5.6 Hz), 43.0 (t, *J* = 28.6 Hz). HRMS (ESI, m/z): calcd. for C₁₆H₁₃BrF₂ [M]⁺ = 322.0169, found 322.0166. IR (film): 3055, 1912, 1448, 1394, 1249, 1159, 978, 826 cm⁻¹.

(E)-1-chloro-4-(1,1-difluoro-4-phenylbut-3-en-1-yl)benzene (3ac)

Compound **3ac** was prepared according to general procedure D using 4-chlorobenzenesulfonyl chloride (106 mg, 0.500 mmol), **1a** (189 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using pentane (Rf \approx 0.3) as eluent afforded **3ac** as a white solid in 65% yield, 90 mg. Melting point: 78.5–82.0 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.47–7.39 (m, 4H), 7.35–7.29 (m, 4H), 7.26 (dd, J = 6.5, 3.0 Hz, 1H), 6.48 (d, J = 15.9 Hz, 1H), 6.08 (dt, J = 15.9, 7.3 Hz, 1H), 3.04 (tdd, J = 15.4, 7.3, 1.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –95.14 (t, J = 15.5 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 136.6, 135.9 (t, J = 2.2 Hz), 135.6, 135.5 (t, J = 27.0 Hz), 128.7, 128.6, 127.7, 126.6 (t, J = 6.3 Hz), 126.3, 121.5 (t, J = 243.6 Hz), 119.8 (t, J = 5.5 Hz), 42.9 (d, J = 28.9 Hz). HRMS (ESI, m/z): calcd. for C₁₆H₁₃ClF₂ [M]⁺ = 278.0674, found 278.0683. IR (film): 3058, 1493, 1398, 1161, 1093, 1032, 972, 746 cm⁻¹.

(E)-1-(1,1-difluoro-4-phenylbut-3-en-1-yl)-4-iodobenzene (3ad)

Compound **3ad** was prepared according to general procedure D using 4-iodobenzenesulfonyl chloride (151 mg, 0.500 mmol), **1a** (189 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using pentane (Rf \approx 0.3) as eluent afforded **3ad** as a white solid in 63% yield, 117 mg. Melting point: 98.8–103.2 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.0 Hz, 2H), 7.39–7.32 (m, 4H), 7.29–7.24 (td, J = 8.7, 8.2, 3.5 Hz, 3H), 6.49 (dd, J = 15.8, 2.2 Hz, 1H), 6.10 (ddt, J = 13.8, 6.5, 2.6 Hz, 1H), 3.04 (tdt, J = 15.4, 7.2, 1.7 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –95.59 (t, J = 15.4 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 137.6, 136.6, 136.5 (t, J = 27.0 Hz), 135.6, 128.6, 127.7, 126.9 (t, J = 6.4 Hz), 126.3, 122.5 (t, J = 243.5 Hz), 119.8 (t, J = 5.5 Hz), 96.1 (t, J = 2.5 Hz), 42.9 (t, J = 28.8 Hz). HRMS (ESI, m/z): calcd. for C₁₆H₁₃IF₂ [M]⁺ = 370.0030, found 370.0022. IR (film): 3079, 1912, 1448, 1390, 1158, 1024, 977, 771 cm⁻¹.

(E)-(4,4-difluorobut-1-ene-1,4-diyl)dibenzene (3ae)

Compound **3ae** was prepared according to general procedure D using benzenesulfonyl chloride (88 mg, 0.50 mmol), **1a** (189 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using pentane (Rf \approx 0.3) as eluent afforded **3ae** as a colorless oil in 70% yield, 87 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.61–7.56 (m, 2H), 7.52–7.46 (m, 3H), 7.40–7.33 (m, 4H), 7.32–7.23 (m, 1H), 6.54 (d, *J* = 15.9 Hz, 2H), 6.22–6.14 (dt, *J* = 14.8, 7.3 Hz, 1H), 3.12 (tdd, *J* = 15.7, 7.3, 1.5 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –95.34 (t, *J* = 15.7 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 137.0 (t, *J* = 26.4 Hz), 136.8, 135.3, 129.7 (t, *J* = 2.0 Hz), 128.5, 128.4, 127.6, 126.3, 125.0 (t, *J* = 6.4 Hz), 121.8 (t, *J* = 243.1 Hz), 120.3 (t, *J* = 5.4 Hz), 43.1 (t, *J* = 28.9 Hz). HRMS (ESI, m/z): calcd. for C₁₆H₁₄F₂ [M]⁺ = 244.1064, found 244.1062. IR (film): 3027, 1450, 1318, 1155, 1038, 966, 765 cm⁻¹.

(E)-4-(1,1-difluoro-4-phenylbut-3-en-1-yl)benzonitrile (3af)

Compound **3af** was prepared according to general procedure D using 4-cyanobenzenesulfonyl chloride (101 mg, 0.500 mmol), **1a** (189 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using Et₂O/pentane (3%, Rf \approx 0.3) as eluent afforded **3af** as a colorless solid in 61% yield, 82 mg. Melting point: 78.0–81.0 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.1 Hz, 2H), 7.59 (d, J = 8.1 Hz, 2H), 7.32–7.28 (m, 4H), 7.26–7.22 (m, 1H), 6.51–6.39 (d, J = 15.9 Hz, 1H), 6.03 (ddd, J = 15.9, 8.4, 6.2 Hz, 1H), 3.12–2.94 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –96.52 (t, J = 15.5 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 141.4 (t, J = 27.2 Hz), 136.4, 136.2, 132.3, 128.6, 127.9, 126.3, 126.1 (t, J = 6.5 Hz), 121.0 (t, J = 244.3 Hz), 119.0 (t, J = 5.7 Hz), 118.0, 113.9 (t, J = 2.2 Hz), 42.7 (t, J = 28.2 Hz). HRMS (ESI, m/z): calcd. for C₁₇H₁₄F₂N [M+H]⁺ = 270.1094, found 270.1090. IR (film): 3027, 2230, 1405, 1230, 1162, 1041, 969 cm⁻¹

(E)-1-(1,1-difluoro-4-phenylbut-3-en-1-yl)-4-nitrobenzene (3ag)

Compound **3ag** was prepared according to general procedure D using 4-nitrobenzenesulfonyl chloride (111 mg, 0.500 mmol), **1a** (189 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.0 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using Et₂O/pentane (5%, Rf \approx 0.3) as eluent afforded **3ag** as a yellow solid in 63% yield, 92 mg. Melting point: 73.8–76.0 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 9.1 Hz, 2H), 7.69 (d, *J* = 9.1 Hz, 2H), 7.32–7.29 (m, 3H), 7.28–7.23 (m, 2H), 6.47 (dd, *J* = 15.9, 1.7 Hz, 1H), 6.06 (dt, *J* = 15.8, 7.3 Hz, 1H), 3.08 (tdd, *J* = 15.5, 7.3, 1.3 Hz, 2H).

¹⁹F NMR (376 MHz, CDCl₃) δ –96.12 (t, J = 15.4 Hz).¹³C NMR (126 MHz, CDCl₃) δ 148.8, 143.1 (t, J = 27.2 Hz), 136.3, 136.3, 128.6, 127.9, 126.5 (t, J = 6.3 Hz), 126.3, 123.7, 121.0 (t, J = 244.4 Hz), 118.8 (t, J = 5.6 Hz), 42.8 (t, J = 28.1 Hz). HRMS (ESI, m/z): calcd. for C₁₆H₁₄F₂NO₂ [M+H]⁺ = 290.0093, found 290.0989. IR (film): 3028, 1519, 1352, 1254, 1163, 1040, 748 cm⁻¹.

methyl (E)-4-(1,1-difluoro-4-phenylbut-3-en-1-yl)benzoate (3ah)

Compound **3ah** was prepared according to general procedure D using methyl 4-(chlorosulfonyl)benzoate (117.3 mg, 0.500 mmol), **1a** (189 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using Et₂O/pentane (2%, Rf \approx 0.3) as eluent afforded **3ah** as a white solid in 75% yield, 114 mg. Melting point: 83.8–88.2 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, J = 8.0, 0.8 Hz, 2H), 7.58–7.55 (d, J = 8.0, 2H), 7.30–7.28 (m, 4H), 7.23 (m, 1H), 6.45 (d, J = 15.7 Hz, 1H), 6.06 (dt, J = 15.9, 7.3 Hz, 1H), 3.94 (s, 3H), 3.05 (tdd, J = 15.5, 7.3, 1.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –96.10 (t, J = 15.6 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 166.3, 141.3 (t, J = 26.8 Hz), 136.6, 135.7, 131.5, 129.7, 128.5, 127.7, 126.3, 125.3 (t, J = 6.3 Hz), 121.5 (t, J = 243.9 Hz), 119.6 (t, J = 5.5 Hz), 52.3, 42.9 (t, J = 28.4 Hz). HRMS (ESI, m/z): calcd. for C₁₈H₁₇F₂O₂ [M+H]⁺ = 303.1197, found 303.1190. IR (film): 3028, 1713, 1593, 1441, 1407, 1282, 1161, 1039, 774 cm⁻¹.

(E)-1-(chloromethyl)-4-(1,1-difluoro-4-phenylbujt-3-en-1-yl)benzene (3ai)

Compound **3ai** was prepared according to general procedure D using 4-(chloromethyl)benzenesulfonyl chloride (112.5 mg, 0.500 mmol), **1a** (189 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using pentane (Rf \approx 0.3) as eluent afforded **3ai** as a colorless oil in 43% yield, 63 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 7.35–7.27 (m, 4H), 7.25–7.20 (m, 1H), 6.47 (d, J = 15.9 Hz, 1H), 6.09 (dt, J = 15.8, 7.3 Hz, 1H), 4.60 (s, 2H), 3.04 (tdd, J = 15.7, 7.3, 1.4 Hz, 2H).¹⁹F NMR (376 MHz, CDCl₃) δ –95.22 (t, J = 15.7 Hz).¹³C NMR (126 MHz, CDCl₃) δ 139.0 (t, J = 1.9 Hz), 137.1 (t, J = 26.8 Hz), 136.7, 135.5, 128.6, 128.5, 127.7, 126.3, 125.5 (t, J = 6.4 Hz), 121.6 (t, J = 243.4 Hz), 120.0 (t, J = 5.4 Hz), 45.4, 42.9 (t, J = 28.7 Hz). HRMS (ESI, m/z): calcd. for C₁₇H₁₆ClF₂ [M+H]⁺ = 293.0909, found 293.0896. IR (film): 3036, 2919, 1415, 1209, 1157, 1018, 982, 968, 768 cm⁻¹.

(E)-1-(1,1-difluoro-4-phenylbut-3-en-1-yl)-3-(trifluoromethyl)benzene (3aj)

Compound 3aj was prepared according to general procedure D using 3-(trifluoromethyl)benzenesulfonyl

chloride (1.22 g, 5.00 mmol), **1a** (1.89 g, 11.25 mmol), Pd(OAc)₂ (56 mg, 0.25 mmol), SIPr•Cl (213.5 mg, 0.500 mmol), Li₂CO₃ (0.74 g, 10 mmol), CuCl (0.60 g, 6.0 mmol), and 1,4-dioxane (30 mL). Purification by silica gel column chromatography using pentane (Rf \approx 0.3) as eluent afforded **3aj** as a colorless oil as 59% yield, 921 mg. (Note: reaction performed in a 250 mL Schlenk pressure-flask)

¹H NMR (500 MHz, CDCl₃) δ 7.82 (s, 1H), 7.73 (t, *J* = 8.7 Hz, 2H), 7.60 (t, *J* = 7.9 Hz, 1H), 7.40–7.32 (m, 4H), 7.31–7.27 (m, 1H), 6.52 (d, *J* = 15.8 Hz, 1H), 6.13 (dt, *J* = 15.8, 7.3 Hz, 1H), 3.10 (tdd, *J* = 15.7, 7.3, 1.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –62.72, –95.24 (t, *J* = 15.7 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 138.0 (t, *J* = 27.2 Hz), 136.6, 135.9, 131.2 (q, *J* = 32.9 Hz), 129.1, 128.7 (m), 128.6, 127.8, 126.7 (dq, *J* = 4.0, 2.1 Hz), 126.3, 123.9 (q, *J* = 272.0 Hz), 122.2 (tt, *J* = 7.9, 3.3 Hz), 121.2 (t, *J* = 244.5 Hz), 119.5 (t, *J* = 5.5 Hz), 42.9 (t, *J* = 28.4 Hz). HRMS (ESI, m/z): calcd. for C₁₇H₁₃F₅ [M]⁺ = 312.0937, found 312.0930. IR (film): 2924, 1598, 1329, 1205, 1158, 1072, 700 cm⁻¹.

(E)-1-(1,1-difluoro-4-phenylbut-3-en-1-yl)-3,5-difluorobenzene (3ak)

Compound **3ak** was prepared according to general procedure D using 3,5-difluorobenzenesulfonyl chloride (111.3 mg, 0.500 mmol), **1a** (189 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using pentane (Rf \approx 0.3) as eluent afforded **3ak** as a colorless oil in 75% yield, 105 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.37–7.27 (m, 4H), 7.29–7.16 (m, 1H), 7.03 (dt, *J* = 6.0, 2.0 Hz, 2H), 6.88 (tt, *J* = 8.7, 2.4 Hz, 1H), 6.48 (d, *J* = 15.9 Hz, 1H), 6.06 (dt, *J* = 15.8, 7.3 Hz, 1H), 3.02 (tdd, *J* = 15.7, 7.3, 1.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –95.57 (t, *J* = 15.6 Hz), –108.38 (t, *J* = 7.7 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 163.9 (d, *J* = 12.4 Hz), 161.9 (d, *J* = 12.4 Hz), 136.5, 136.0, 128.6, 127.8, 126.3, 120.6 (tt, *J* = 244.7, 2.9 Hz), 119.2 (t, *J* = 5.5 Hz), 108.7 (dt, *J* = 27.7, 6.7 Hz), 105.3 (dt, *J* = 25.3, 1.5 Hz) 2.6 (t, *J* = 28.2 Hz). HRMS (ESI, m/z): calcd. for C₁₆H₁₂F₄[M]⁺ = 280.0875, found 280.0872. IR (film): 3028, 1598, 1444, 1347, 1124, 1061, 984, 865, 749 cm⁻¹.

(E)-1-(1,1-difluoro-4-phenylbut-3-en-1-yl)-2,3,4-trifluorobenzene (3al)

Compound **3al** was prepared according to general procedure D using 2,3,4-trifluorobenzenesulfonyl chloride (115.3 mg, 0.500 mmol), **1a** (189 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using pentane (Rf \approx 0.3) as eluent afforded **3al** as a colorless oil in 63% yield, 94 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.35–7.30 (m, 4H), 7.29–7.25 (m, 2H), 7.27 (dd, J = 3.2, 2.0 Hz, 1H), 7.23 (ddd, J = 4.7, 3.4, 2.1 Hz, 1H), 7.01 (tdd, J = 9.1, 6.8, 2.1 Hz, 1H), 6.49 (d, J = 15.8 Hz, 1H), 6.10–6.00 (m, 1H), 3.15 (td, J = 16.1, 7.3 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –92.85 (td, J = 16.1, 11.5 Hz), -130.58 (dddd, J = 24.0, 12.3, 6.3, 2.8 Hz), -135.40 (dt, J = 20.6, 9.8 Hz), -158.83 (tt, J = 20.5, 4.4 Hz). ¹³C NMR (126 MHz,

CDCl₃) δ 152.1 (dm, J = 253.7 Hz), 148.7 (ddd, J = 256.0, 11.9, 4.2 Hz), 141.3 (t, J = 15.4 Hz), 139.3 (t, J = 15.6 Hz), 136.5, 135.92 128.6, 127.8, 126.3, 120.9 (ddd, J = 8.4, 4.9, 3.4 Hz), 119.8 (tt, J = 245.3, 3.0 Hz), 119.3 (t, J = 5.3 Hz), 112.0 (dd, J = 17.8, 4.2 Hz), 41.7 (dt, J = 27.3, 3.3 Hz). HRMS (ESI, m/z): calcd. for C₁₆H₁₁F₅ [M]⁺ = 298.0781, found 298.0783. IR (film): 3028, 1620, 1517, 1449, 1324, 1228, 1143, 1062, 966, 815 cm⁻¹.

(E)-1-bromo-4-(1,1-difluoro-4-phenylbut-3-en-1-yl)-2,5-difluorobenzene (3am)

Compound **3am** was prepared according to general procedure D using 4-bromo-2,5-difluorobenzenesulfonyl chloride (145.7 mg, 0.500 mmol), **1a** (189 mg, 1.125 mmol), $Pd(OAc)_2$ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li_2CO_3 (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using pentane (3Rf \approx 0.4) as eluent afforded **3am** as a colorless oil in 57% yield, 102 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.40 (ddt, J = 9.5, 5.3, 1.0 Hz, 1H), 7.35–7.29 (m, 4H), 7.29–7.25 (m, 1H), 7.25–7.21 (m, 1H), 6.52 (d, J = 15.8 Hz, 1H), 6.07 (dtd, J = 15.8, 7.4, 1.0 Hz, 1H), 3.23–3.11 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –94.27 (td, J = 16.1, 10.9 Hz), –112.16 (ddd, J = 15.8, 8.4, 5.5 Hz), –118.76 (dqd, J = 16.5, 10.6, 6.2 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 155.3 (dd, J = 245.5, 3.1 Hz), 153.8 (dq, J = 252.1, 3.5 Hz), 136.5, 136.0, 128.6, 127.8, 126.3, 121.7, 121.5, 119.5 (td, J = 245.4 3.2 Hz), 119.1 (t, J = 5.2 Hz), 114.7 (dtd, J = 27.0, 8.1, 3.6 Hz), 111.4 (dd, J = 23.5, 10.0 Hz), 41.4 (td, J = 27.2, 3.8 Hz). HRMS (ESI, m/z): calcd. for C₁₆H₁₂BrF₄ [M+H]⁺ = 359.0058, found 359.0053. IR (film): 3062, 3028, 1621, 1486, 1402, 1313, 1158, 966, 750 cm^{-1.}

(E)-1-(1,1-difluoro-4-phenylbut-3-en-1-yl)-2-(trifluoromethoxy)benzene (3an)

Compound **3an** was prepared according to general procedure D using 2-(trifluoromethoxy)benzenesulfonyl chloride (130.3 mg, 0.500 mmol), **1a** (189 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using pentane (Rf \approx 0.4) as eluent afforded **3an** a colorless oil in 76% yield, 125 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.49 (td, *J* = 7.8, 1.7 Hz, 1H), 7.39 (d, *J* = 8.4 Hz, 1H), 7.36–7.29 (m, 5H), 7.28–7.19 (m, 1H), 6.49 (d, *J* = 15.8 Hz, 1H), 6.09 (dt, *J* = 15.8, 7.3 Hz, 1H), 3.20 (dd, *J* = 7.3, 1.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –56.61 (q, *J* = 2.6 Hz), –94.35 (td, *J* = 16.2, 2.9 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 146.3 (h, *J* = 2.2 Hz), 136.7, 135.4, 131.5 (t, *J* = 1.8 Hz), 128.8 (t, *J* = 26.6 Hz), 128.5, 127.7 (t, *J* = 8.4 Hz), 127.6, 126.4, 126.3, 120.2 (q, *J* = 259.1 Hz), 120.5 (t, *J* = 245.1 Hz), 120.2 (q, *J* = 2.2 Hz), 119.9 (t, *J* = 5.5 Hz), 41.8 (d, *J* = 27.5 Hz). HRMS (ESI, m/z): calcd. for C₁₇H₁₃F₅O [M]⁺ = 328.0887, found 328.0886. IR (film): 3028, 2926, 1611, 1495, 1454, 1224, 1036, 966, 763, 692 cm⁻¹.

(E)-1-bromo-2-(1,1-difluoro-4-phenylbut-3-en-1-yl)benzene (3ao)

Compound **3ao** was prepared according to general procedure D using 2-bromobenzenesulfonyl chloride (128 mg, 0.500 mmol), **1a** (189 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using pentane (Rf \approx 0.4) as eluent afforded **3ao** as a colorless oil in 58% yield, 95 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, J = 7.9, 1.1 Hz, 1H), 7.53 (dd, J = 7.8, 1.8 Hz, 1H), 7.31 (td, J = 7.6, 1.2 Hz, 1H), 7.28–7.13 (m, 6H), 6.44 (d, J = 15.8 Hz, 1H), 6.04 (dt, J = 15.8, 7.3 Hz, 1H), 3.26 (tdd, J = 16.3, 7.3, 1.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –94.40 (t, J = 16.3 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 136.8, 135.7 (t, J = 25.4 Hz), 135.4, 134.8, 131.2, 128.5, 128.0 (t, J = 9.3 Hz), 127.6,127.3, 126.2, 121.4 (t, J = 247.3 Hz), 120.0 (t, J = 5.1 Hz), 119.5 (t, J = 4.1 Hz), 40.9 (t, J = 27.0 Hz). HRMS: (ESI, m/z): calcd. for C₁₆H₁₃BrF₂ [M]⁺ = 322.0169, found 322.0172. IR (film) 3027, 1593, 1439, 1301, 1166, 1071, 1030, 966, 750 cm⁻¹.

(E)-2-(1,1-difluoro-4-phenylbut-3-en-1-yl)naphthalene (3ap)

Compound **3ap** was prepared according to general procedure D using naphthalene-2-sulfonyl chloride (113.3 mg, 0.500 mmol), **1a** (189 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using pentane (Rf \approx 0.3) as eluent afforded **3ap** as a white solid in 53% yield, 79 mg. Melting point: 91.0–92.6 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.05–7.98 (s, 1H), 7.95–7.81 (m, 3H), 7.63–7.50 (m, 3H), 7.35–7.27 (m, 4H), 7.25–7.20 (m, 1H), 6.52 (d, *J* = 15.9 Hz, 1H), 6.15 (dt, *J* = 15.9, 7.2 Hz, 1H), 3.16 (tdd, *J* = 15.7, 7.3, 1.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –96.52 (t, *J* = 15.5 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 136.8, 135.4, 134.3 (t, *J* = 26.4 Hz), 133.7 (t, *J* = 1.6 Hz), 132.6, 128.6, 128.5, 128.4, 127.7, 127.6, 127.1, 126.6, 126.3, 124.8 (t, *J* = 7.3 Hz), 122.3 (t, *J* = 5.9 Hz), 122.0 (t, *J* = 243.4 Hz), 120.3 (t, *J* = 5.5 Hz), 43.2 (t, *J* = 28.9 Hz). HRMS (ESI, m/z): calcd. for C₂₀H₁₆F₂ [M]⁺ = 294.1220, found 294.1217. IR (film): 3058, 2923, 1495, 1314, 1212, 1155, 966, 749 cm⁻¹.

(E)-4-(1,1-difluoro-4-phenylbut-3-en-1-yl)-3,5-dimethylisoxazole (3aq)

Compound **3aq** was prepared according to general procedure D using 3,5-dimethylisoxazole-4-sulfonyl chloride (97.8 mg, 0.500 mmol), **1a** (189 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using Et₂O/pentane (3%, Rf \approx 0.3) as eluent afforded **3aq** as a colorless oil in 40% yield, 53 mg.

¹H NMR (500 MHz, CDCl₃) δ 7.34–7.29 (m, 4H), 7.28–7.23 (m, 1H), 6.49 (d, *J* = 16.0 Hz, 1H), 6.05 (dt, *J* = 15.8, 7.4 Hz, 1H), 2.98 (tdd, *J* = 15.3, 7.4, 1.4 Hz, 2H), 2.42 (t, *J* = 1.9 Hz, 3H), 2.30 (t, *J* = 1.2 Hz, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ –91.01 (t, *J* = 15.3 Hz).¹³C NMR (151 MHz, CDCl₃) δ 167.9 (t, *J* = 4.2 Hz), 157.6 (t, *J* = 2.4 Hz), 136.3, 136.3, 128.6, 127.9, 126.2, 119.9 (t, *J* = 240.5 Hz), 118.9 (t, *J* = 5.4 Hz), 112.1 (t, *J* = 31.4 Hz), 42.7 (t, *J* = 29.0 Hz), 12.2 (t, *J* = 1.9 Hz), 11.1 (t, *J* = 1.9 Hz). HRMS (ESI, m/z): calcd. for C₁₅H₁₆F₂NO [M+H]⁺ = 264.1200, found 264.1192. IR (film): 2925, 1633, 1455, 1324, 1163, 1031, 969, 750 cm⁻¹.

(E)-6-(1,1-difluoro-4-phenylbut-3-en-1-yl)-2H-chromen-2-one (3ar)

Compound **3ar** was prepared according to general procedure D using 2-oxo-2H-chromene-6-sulfonyl chloride (122.3 mg, 0.500 mmol), **1a** (189 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography ethyl acetate/pentane (10%, Rf \approx 0.3) as eluent afforded **3ar** as a white solid in 48% yield, 76 mg. Melting point: 87.5–90.8 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 9.6 Hz, 1H), 7.65 (m, 1H), 7.63 (s, 1H), 7.39 (d, *J* = 8.4 Hz, 1H), 7.42–7.27 (m, 4H), 7.24 (td, *J* = 4.4, 3.9, 1.6 Hz, 1H), 6.49 (m, 1H), 6.46 (d, *J* = 6.8 Hz, 1H), 6.07 (dt, *J* = 15.9, 7.3 Hz, 1H), 3.07 (tdd, *J* = 15.5, 7.3, 1.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –93.96 (t, *J* = 15.6 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 160.1, 154.6 (t, *J* = 1.9 Hz), 143.0, 136.5, 135.9, 133.2 (t, *J* = 27.3 Hz), 128.6 (t, *J* = 6.0 Hz), 128.6, 127.8, 126.3, 124.9 (t, *J* = 6.8 Hz), 121.2 (t, *J* = 243.8 Hz), 119.5 (t, *J* = 5.6 Hz), 118.3, 117.6, 117.2, 43.0 (t, *J* = 28.8 Hz). HRMS (ESI, m/z): calcd. for C₁₉H₁₅F₂O₂ [M+H]⁺ = 313.1040, found 313.1027. IR (film): 3079, 1731, 1614, 1574, 1377, 1253, 1157, 1093, 968, 765 cm⁻¹.

methyl (E)-5-(1,1-difluoro-4-phenylbut-3-en-1-yl)furan-2-carboxylate (3as)

Compound **3as** was prepared according to general procedure D using methyl 5-(chlorosulfonyl)furan-2carboxylate (112.3 mg, 0.500 mmol), **1a** (189 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography ethyl acetate/pentane (10%, Rf \approx 0.3) as eluent afforded **3as** as a colorless oil in 50% yield, 73 mg.

¹H NMR (500 MHz, CDCl₃) δ 7.39–7.30 (m, 4H), 7.28–7.24 (m, 1H), 7.18 (d, *J* = 3.4 Hz, 1H), 6.72 (d, *J* = 3.5 Hz, 1H), 6.58 (d, *J* = 15.9 Hz, 1H), 6.11 (dt, *J* = 15.8, 7.3 Hz, 1H), 3.94 (s, 3H), 3.22 (tdd, *J* = 15.8, 7.3, 1.4 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ –95.82 (t, *J* = 15.8 Hz). ¹³C NMR (151 MHz, CDCl₃) δ 158.6, 151.6 (t, *J* = 37.2 Hz), 145.2, 136.6, 136.0, 128.5, 127.8, 126.3, 118.8 (t, *J* = 4.9 Hz), 118.1, 116.7 (t, *J* = 239.5 Hz), 110.9 (t, *J* = 3.0 Hz), 52.2, 40.0 (t, *J* = 26.1 Hz). HRMS (ESI, m/z): calcd. for C₁₆H₁₅F₂O₃ [M+H]⁺ = 293.0989, found 293.0981. IR (film): 2925, 1731, 1435, 1314, 1297, 1158, 1019, 984, 762 cm⁻¹.

(E)-1-bromo-4-(4,4-difluoro-4-(p-tolyl)but-1-en-1-yl)benzene (3ba)

Compound **3ba** was prepared according to general procedure D using *para*-toluenesulfonyl chloride (96 mg, 0.50 mmol), **1b** (277.9 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using pentane (Rf \approx 0.4) as eluent afforded **3ba** as a white solid in 72% yield, 121 mg. Melting point: 87.5–91.8 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.5 Hz, 2H), 7.36 (d, *J* = 7.9 Hz, 2H), 7.23 (d, *J* = 7.9 Hz, 2H), 7.18 (d, *J* = 8.5 Hz, 2H), 6.40 (d, *J* = 15.9 Hz, 1H), 6.10 (dt, *J* = 15.9, 7.2 Hz, 1H), 3.01 (tdd, *J* = 15.5, 7.2, 1.4 Hz, 2H), 2.38 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ –94.67 (t, *J* = 15.6 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 139.8 (t, *J* = 2.3 Hz), 135.8, 133.9, 131.6, 129.1, 128.7, 127.8, 127.5, 124.9 (t, *J* = 6.4 Hz), 121.8 (t, *J* = 242.6 Hz), 121.4 (t, *J* = 5.4 Hz), 42.9 (t, *J* = 29.3 Hz), 21.2. HRMS (ESI, m/z): calcd. for C₁₇H₁₅BrF₂ [M]⁺ = 336.0325, found 336.0321. IR (film): 2925, 1486, 1275, 1205, 1151, 913, 748 cm⁻¹.

(E)-1-chloro-3-(4,4-difluoro-4-(p-tolyl)but-1-en-1-yl)benzene (3ca)

Compound **3ca** was prepared according to general procedure D using *para*-toluenesulfonyl chloride (96 mg, 0.50 mmol), **1c** (227.9 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using pentane (Rf \approx 0.4) as eluent afforded **3ca** as a colorless oil in 65% yield, 95 mg.

¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, *J* = 8.0 Hz, 2H), 7.30 (t, *J* = 1.8 Hz, 1H), 7.23 (dd, *J* = 7.6, 1.4 Hz, 2H), 7.21–7.16 (m, 3H), 6.41 (d, *J* = 15.8 Hz, 1H), 6.12 (dt, *J* = 15.8, 7.3 Hz, 1H), 3.03 (tdd, *J* = 15.6, 7.3, 1.4 Hz, 2H), 2.38 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ –94.50 (t, *J* = 15.5 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 139.8 (t, *J* = 2.1 Hz), 138.7, 134.5, 134.1 (t, *J* = 26.5 Hz), 133.8, 129.7, 129.1, 127.5, 126.2, 124.9 (t, *J* = 6.4 Hz), 124.5, 122.2 (t, *J* = 5.4 Hz), 121.8 (t, *J* = 245.7 Hz), 43.0 (t, *J* = 29.4 Hz), 21.2. HRMS (ESI, m/z): calcd. for C₁₇H₁₅ClF₂ [M]⁺ = 292.0830, found 292.0823. IR (film) 2923, 1616, 1594, 1475, 1312, 1252, 1158, 1038, 965, 818, 778 cm⁻¹.

(E)-1-(4,4-difluoro-4-(p-tolyl)but-1-en-1-yl)-2-methylbenzene (3da)

Compound **3da** was prepared according to general procedure D using *para*-toluenesulfonyl chloride (96 mg, 0.50 mmol), **1d** (204.9 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using pentane (Rf \approx 0.3) as eluent afforded **3da** as a colorless oil in 63% yield, 86 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.0 Hz, 2H), 7.36–7.33 (m, 1H), 7.23(d, *J* = 8.0 Hz, 2H), 7.13 (qd, *J* = 4.9, 4.5, 2.6 Hz, 3H), 6.64 (d, *J* = 15.7 Hz, 1H), 5.95 (dt, *J* = 15.7, 7.3 Hz, 1H), 3.06 (tdd, *J* = 15.4, 7.3, 1.4 Hz, 2H), 2.38 (s, 3H), 2.26 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ –94.03 (t, *J* = 15.5 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 139.7 (t, *J* = 1.9 Hz), 136.2, 135.2, 134.1 (t, *J* = 26.8 Hz), 133.3, 130.1, 129.0, 127.5, 126.0, 125.7, 125.0 (t, *J* = 6.4 Hz), 122.1 (t, *J* = 242.5 Hz), 121.9 (t, *J* = 5.5 Hz), 43.2 (t, *J* = 29.1 Hz), 21.2, 19.6. HRMS (ESI, m/z): calcd. for C₁₈H₁₈F₂ [M]⁺ = 272.1377, found 272.1377. IR (film): 3020, 2923, 1616, 1517, 1460, 1309, 1252, 1158, 1036, 966, 749 cm⁻¹.

ethyl (E)-3-(4,4-difluoro-4-(3-(trifluoromethyl)phenyl)but-1-en-1-yl)benzoate (3ej)

Compound **3ej** was prepared according to general procedure D using 3-trifluoromethylbenzenesulfonyl chloride (122.3 mg, 0.500 mmol), **1e** (210 mg, 0.875 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using Et₂O/pentane (5%, Rf \approx 0.3) as eluent afforded **3ej** as a colorless oil in 61% yield, 115 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.99 (t, *J* = 1.8 Hz, 1H), 7.92 (dt, *J* = 7.8, 1.4 Hz, 1H), 7.77 (tt, *J* = 1.8, 0.9 Hz, 1H), 7.71–7.67 (t, *J* = 8.0 Hz, 2H), 7.60–7.54 (t, *J* = 7.8 Hz, 1H), 7.50 (dt, *J* = 7.7, 1.6 Hz, 1H), 7.37 (t, *J* = 7.7 Hz, 1H), 6.52 (d, *J* = 15.8 Hz, 1H), 6.18 (dt, *J* = 15.9, 7.3 Hz, 1H), 4.38 (q, *J* = 7.1 Hz, 2H), 3.07 (tdd, *J* = 15.8, 7.3, 1.3 Hz, 2H), 1.40 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ –62.75, –95.31 (t, *J* = 15.7 Hz). ¹³C NMR (151 MHz, CDCl₃) δ 166.5, 137.9 (t, *J* = 27.2 Hz), 136.8, 135.1, 131.1 (m), 130.9, 130.5, 129.2, 128.8, 128.6, 128.6 (m), 127.4, 126.8 (m), 124.6 (t, *J* = 261.7 Hz), 122.2 (m), 121.1 (t, *J* = 244.1Hz), 120.8 (t, *J* = 5.0 Hz), 61.1, 42.9 (t, *J* = 28.3 Hz), 14.3. HRMS (ESI, m/z): calcd. for C₂₀H₁₇F₅O₂ [M]⁺ = 384.1149, found 384.1146. IR (film): 2983, 1715, 1446, 1255, 1165, 968, 751 cm⁻¹.

(E)-3-(4,4-difluoro-4-(p-tolyl)but-1-en-1-yl)benzo[b]thiophene (3fa)

Compound **3fa** was prepared according to general procedure D using *para*-toluenesulfonyl chloride (96 mg, 0.5 mmol), **1f** (196 mg, 0.875 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using pentane (Rf \approx 0.2) as eluent afforded **3fa** as a colorless oil in 57% yield, 92 mg.

¹H NMR (500 MHz, CDCl₃) δ 7.87–7.82 (m, 1H), 7.81–7.76 (m, 1H), 7.43–7.39 (m, 2H), 7.39–7.34 (m, 3H), 7.25–7.21 (m, 2H), 6.71 (d, *J* = 15.9 Hz, 1H), 6.16 (dt, *J* = 15.9, 7.3 Hz, 1H), 3.10 (tdd, *J* = 15.4, 7.3, 1.4 Hz, 2H), 2.38 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ –94.10 (t, *J* = 15.6 Hz). ¹³C NMR (151 MHz, CDCl₃) δ 140.36, 139.77, 137.56, 134.02 (t, *J* = 26.7 Hz), 133.65, 129.06, 127.54, 125.02 (t, *J* = 6.0 Hz), 124.43, 124.21, 122.85, 122.46 (t, *J* = 5.2 Hz), 122.07, 121.98 (t, *J* = 243.1 Hz), 121.91, 43.27 (t, *J* = 29.0 Hz), 21.24. HRMS (ESI, m/z): calcd. for C₁₉H₁₇F₂S [M+H]⁺ = 315.1019, found 315.1017. IR (film): 3005, 1275, 2, 1204, 1150, 750 cm⁻¹.

(E)-4-(4,4-difluoro-2-methyl-4-(p-tolyl)but-1-en-1-yl)-1,1'-biphenyl (3ga)

Compound **3ga** was prepared according to general procedure D using *para*-toluenesulfonyl chloride (96 mg, 0.50 mmol), **1g** (290.6 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). The crude mixture was analyzed by GC and GC-MS (Z/E≈19:1). Purification by silica gel column chromatography using pentane (Rf \approx 0.3) as eluent afforded **3ga** as the major isomer in 55% yield, colorless oil, 96 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.59 (dd, *J* = 8.3, 1.3 Hz, 2H), 7.55 (d, *J* = 8.3 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.36–7.31 (m, 1H), 7.23 (m, 4H), 6.27 (s, 1H), 2.98 (td, *J* = 15.9, 0.9 Hz, 2H), 2.38 (s, 3H), 1.88 (d, *J* = 1.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ –93.45 (t, *J* = 15.9 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 140.8, 139.6, 139.2, 136.7, 134.4 (t, *J* = 26.8 Hz), 130.9, 130.8 (t, *J* = 4.0 Hz), 129.3, 128.9, 128.7, 127.2, 126.9, 126.7, 125.0 (t, *J* = 6.4 Hz), 122.6 (t, *J* = 244.5 Hz), 50.0 (t, *J* = 28.1 Hz), 21.3, 19.3 (t, *J* = 1.9 Hz). HRMS (ESI, m/z): calcd. for C₂₄H₂₂F₂ [M]⁺ = 348.1690, found 348.1674. IR (film): 3028, 2922, 1743, 1486, 1597, 1486, 1325, 1156, 1061, 818, 762 cm⁻¹.

(E)-5-(4,4-difluoro-2-methyl-4-(p-tolyl)but-1-en-1-yl)benzo[d][1,3]dioxole (3ha)

Compound **3ha** was prepared according to general procedure D using *para*-toluenesulfonyl chloride (96 mg, 0.50 mmol), **1h** (254.5 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60 mg, 0.60 mmol), and 1,4-dioxane (1.5 mL). The crude mixture was analyzed by GC and GC-MS (Z/E≈18:1). Purification by silica gel column chromatography using Et₂O/pentane (3%, Rf \approx 0.3) as eluent afforded **3ha** as major isomer in 56% yield, colorless oil, 88 mg.

¹H NMR (500 MHz, CDCl₃) δ 6.76 (d, J = 8.0 Hz, 2H), 6.66 (d, J = 1.7 Hz, 2H), 6.62 (ddd, J = 8.0, 1.7, 0.7 Hz, 1H), 6.14 (s, 1H), 5.94 (s, 2H), 2.93 (td, J = 15.8, 0.9 Hz, 2H), 2.38 (s, 3H), 1.81 (d, J = 1.3 Hz, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ –93.54 (t, J = 16.0 Hz). ¹³C NMR (151 MHz, CDCl₃) δ 147.3, 146.0, 139.5, 134.4 (t, J = 26.7 Hz), 131.8, 130.9, 129.5 (t, J = 3.7 Hz), 128.9, 125.0 (t, J = 6.2 Hz), 122.6 (t, J = 244.4 Hz), 122.5, 109.1, 108.0, 100.9, 49.9 (t, J = 27.8 Hz), 21.2, 19.2. HRMS (ESI, m/z): calcd. for C₁₉H₁₉F₂O₂ [M+H]⁺ = 317.1353, found 317.1348. IR (film): 2920, 1617, 1503, 1440, 1323, 1257, 1040, 933, 818 cm⁻¹.

4-((4-bromophenyl)difluoromethyl)-2,3,4,5-tetrahydro-1,1'-biphenyl (3ib)

Compound **3ib** was prepared according to general procedure D using 4-bromobenzenesulfonyl chloride (128 mg, 0.500 mmol), **1i** (182.3 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500

mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60 mg, 0.60 mmol), and 1,4-dioxane (1.5 mL). The crude mixture was analyzed by GC and GC-MS (*d.r.* >95:5). Purification by silica gel column chromatography using pentane (Rf \approx 0.3) as eluent afforded **3ib** as a white solid in 62% yield, 92 mg. The crystal of **3ib** was obtained by slow evaporation of hexane solution. Melting point: 96.2–99.4 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 8.3 Hz, 2H), 7.44–7.26 (m, 6H), 7.25–7.20 (m, 1H), 6.04 (dt, J = 5.1, 2.7 Hz, 1H), 2.60–2.39 (m, 2H), 2.38–2.11 (m, 3H), 2.12–2.00 (m, 1H), 1.67–1.47 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ –104.22 (dd, J = 92.5, 13.2 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 141.6, 136.6, 135.4 (t, J = 27.5 Hz), 131.5, 128.3, 127.2 (t, J = 6.8 Hz), 126.9, 125.0, 124.0 (t, J = 2.6 Hz), 123.6 (t, J = 245.44 Hz), 122.3, 42.1 (t, J = 26.6 Hz), 27.2, 25.6 (t, J = 4.6 Hz), 22.3 (t, J = 4.2 Hz). HRMS (ESI, m/z): calcd. for C₁₉H₁₇BrF₂ [M]⁺ = 362.0482, found 362.0481. IR (film): 3051, 2931, 2843, 1594, 1494, 1454, 1396, 1323, 1268, 747 cm⁻¹.

(E)-1-bromo-4-(1,1-difluoro-7-phenylhept-6-en-1-yl)benzene (3jb)

Compound **3jb** was prepared according to general procedure D using 4-bromobenzenesulfonyl chloride (128 mg, 0.500 mmol), **1j** (184 mg, 0.875 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60 mg, 0.60 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using pentane (Rf \approx 0.3) as eluent afforded **3jb** as a colorless oil in 42% yield, 76 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.4 Hz, 2H), 7.36–7.32 (m, 6H), 7.30 (d, *J* = 8.1 Hz, 1H), 7.24–7.18 (m, 1H), 6.37 (dt, *J* = 15.9, 1.5 Hz, 1H), 6.17 (dt, *J* = 15.8, 6.9 Hz, 1H), 2.28–2.19 (m, 2H), 2.17–1.95 (m, 2H), 1.54–1.44 (m, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ –95.42 (t, *J* = 16.1 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 137.6, 136.4 (t, *J* = 27.6 Hz), 131.6, 130.3, 130.1, 128.5, 126.9, 126.7 (t, *J* = 6.5 Hz), 125.9, 123.9 (t, *J* = 2.5 Hz), 122.7 (t, *J* = 242.6 Hz), 38.7 (t, *J* = 27.6 Hz), 32.6, 28.8, 21.9 (t, *J* = 4.2 Hz). HRMS (ESI, m/z): calcd. for C₁₉H₁₉BrF₂ [M]⁺ = 364.0638, found 364.0634. IR (film): 2932, 2359, 2341, 1597, 1491, 1326, 1290, 1171, 826, 744, 692 cm⁻¹.

(E)-1-bromo-4-(1,1-difluoro-6-(4-(trifluoromethoxy)phenyl)hex-5-en-1-yl)benzene (3kb)

Compound **3kb** was prepared according to general procedure D using 4-bromobenzenesulfonyl chloride (128 mg, 0.500 mmol), **1k** (257.5 mg, 0.875 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using pentane (Rf \approx 0.3) as eluent afforded **3kb** as a colorless oil in 53% yield, 119 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.6 Hz, 2H), 7.35–7.30 (m, 4H), 7.14 (dd, *J* = 8.6, 1.1 Hz, 2H), 6.33 (d, *J* = 15.8 Hz, 1H), 6.14 (dt, *J* = 15.8, 6.9 Hz, 1H), 2.19 (td, *J* = 7.0, 1.5 Hz, 2H), 2.15–2.05 (m, 2H), 1.52–1.41 (m, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ –58.40, –96.06 (t, *J* = 16.2 Hz). ¹³C NMR (151 MHz, CDCl₃) δ 148.0, 136.4, 136.4 (t, *J* = 27.3 Hz), 131.6, 131.2, 128.9, 127.1, 126.7 (t, *J* = 6.1 Hz), 123.9, 122.6 (t, *J* = 301.7 Hz), 121.1, 120.5 (q, *J* = 257.0 Hz), 38.8 (t, *J* = 27.4 Hz), 32.6, 28.7, 21.9 (t, *J* = 3.9 Hz). HRMS (ESI, m/z): calcd. for C₂₀H₁₈BrF₅O [M]⁺ = 448.0461, found 448.0450. IR (film): 2932, 1598, 1507, 1433, 1397, 1327, 1255, 1103, 1073, 1030, 966, 828 cm⁻¹.

(E)-3-(6-(4-bromophenyl)-6,6-difluorohex-1-en-1-yl)-2H-chromen-2-one (3lb)

Compound **3lb** was prepared according to general procedure D using 4-bromobenzenesulfonyl chloride (128 mg, 0.500 mmol), **1l** (243.5 mg, 0.875 mmol), $Pd(OAc)_2$ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li_2CO_3 (74.0 mg, 1.00 mmol), CuCl (60 mg, 0.60 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using pentane (Rf \approx 0.3) as eluent afforded **3lb** as a colorless oil in 48% yield, 104 mg.

¹H NMR (500 MHz, CDCl₃) δ 7.59 (s, 1H), 7.55 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 7.1 Hz, 2H), 7.36–7.29 (m, 3H), 7.28–7.23 (m, 1H), 6.65 (dt, J = 15.9, 7.0 Hz, 1H), 6.39 (d, J = 15.9 Hz, 1H), 2.23 (qd, J = 7.1, 1.6 Hz, 2H), 2.19–2.06 (m, 2H), 1.52–1.42 (m, 4H). ¹⁹F NMR (471 MHz, CDCl₃) δ –96.03 (t, J = 16.2 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 160.5, 152.8, 136.4 (t, J = 27.3 Hz),136.2, 136.1, 131.6, 130.8, 127.4, 126.7 (t, J = 6.5 Hz), 125.1, 124.4, 124.0, 123.9 (t, J = 2.1 Hz), 122.6 (t, J = 242.7 Hz),119.6, 116.4, 38.7 (t, J = 27.4 Hz), 33.2, 28.5, 22.0 (t, J = 4.2 Hz). HRMS (ESI, m/z): calcd. for C₂₂H₂₀BrF₄O₂ [M+H]⁺ = 433.0615, found 433.0611. IR (film): 3005, 1723, 1275, 1206, 1150, 1070, 913, 747 cm⁻¹

Compound **3mb** was prepared according to general procedure D using 4-bromobenzenesulfonyl chloride (128 mg, 0.500 mmol), **1m** (134.8 mg, 0.875 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60 mg, 0.60 mmol), and 1,4-dioxane (1.5 mL). Purification by silica gel column chromatography using pentane (Rf \approx 0.3) as eluent afforded **3mb** as a colorless solid in 81% yield, 87 mg. Melting point: 86.2–88.0 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.7 Hz, 2H), 7.41 (d, *J* = 8.5 Hz, 2H), 7.34 (d, *J* = 8.7 Hz, 2H), 7.18 (d, *J* = 8.5 Hz, 2H), 6.30 (dt, *J* = 15.7, 1.5 Hz, 1H), 6.12 (dt, *J* = 15.7, 6.8 Hz, 1H), 2.22 (qd, *J* = 7.3, 1.4 Hz, 2H), 2.18–2.06 (m, 2H), 1.66–1.54 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ –95.64 (t, *J* = 16.2 Hz). ¹³C NMR (151 MHz, CDCl₃) δ 136.30 (t, *J* = 26.9 Hz), 131.64, 131.64, 131.55, 130.23, 129.67, 127.49, 126.70 (t, *J* = 6.1 Hz), 124.00 (t, *J* = 2.2 Hz), 121.8 (t, *J* = 242.5 Hz), 120.69, 38.38 (t, *J* = 27.5 Hz), 32.30, 22.01 (t, *J* = 3.9 Hz). HRMS (ESI, m/z): calcd. for C₁₈H₁₆Br₂F₂ [M]⁺ = 427.9587, found 427.9589. IR (film):2926, 1597, 1487, 1397, 1175, 1073, 969, 827 cm⁻¹.

(E)-6-(1,1-difluoro-4,6,6-trimethylhept-3-en-1-yl)-2H-chromen-2-one (3nr)

Compound **3nr** was prepared according to general procedure D using 2-oxo-2H-chromene-6-sulfonyl chloride (122 mg, 0.500 mmol), **1n** (198.0 mg, 1.125 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60 mg, 0.60 mmol), and 1,4-dioxane (1.5 mL). The crude mixture

was analyzed by GC and GC-MS (>3 isomers observed, major:minor \approx 17:1). Purification by silica gel column chromatography using Et₂O/pentane (5%, Rf \approx 0.3) afforded **3nr** (major isomer) as a colorless oil in 44% yield, 71 mg.

¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 9.6 Hz, 1H), 7.64–7.58 (m, 2H), 7.36 (d, *J* = 8.5 Hz, 1H), 6.47 (d, *J* = 9.6 Hz, 1H), 5.02 (td, *J* = 7.4, 6.7, 3.3 Hz, 1H), 2.90 (td, *J* = 15.6, 7.4 Hz, 2H), 1.88 (s, 2H), 1.57 (s, *J* = 1.4 Hz, 3H), 0.82 (s, 9H). ¹⁹F NMR (471 MHz, CDCl₃) δ –93.80 (t, *J* = 15.6 Hz). ¹³C NMR (151 MHz, CDCl₃) δ 160.24, 154.58, 143.03, 139.69, 133.87 (t, *J* = 27.7 Hz), 128.72 (t, *J* = 5.8 Hz), 124.98 (t, *J* = 6.5 Hz), 121.92 (t, *J* = 243.7 Hz), 118.42, 117.60 (t, *J* = 5.2 Hz), 117.55, 117.05, 53.49, 38.32 (t, *J* = 28.1 Hz), 31.69, 29.95, 19.12. HRMS (ESI, m/z): calcd. for C₁₉H₂₃F₂O₂ [M+H]⁺ = 321.1666, found 321.1658. IR (film): 3005, 1737, 1275, 1205, 1150, 764, 750 cm⁻¹.

(88,98,10R,13R,148,17R)-3-(difluoro(p-tolyl)methyl)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-

4,5,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3H-cyclopenta[a]phenanthrene (30a)

Compound **30a** was prepared according to general procedure D using *p*-toluenesulfonyl chloride (95.6 mg, 0.500 mmol), **10** (367 mg, 0.875 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), SIPr•Cl (21.3 mg, 0.0500 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60 mg, 0.60 mmol), and 1,4-dioxane (2.0 mL) reflux at 110 °C for 38 h. The crude mixture was analyzed by GC, GC-MS and ¹⁹F NMR (d.r. \approx 3.6:1). Purification by silica gel column chromatography using pentane (Rf \approx 0.6) afforded **30r** as a white solid in 61% yield as a mixture of stereoisomers, 156 mg. Melting point: 136.2–138.0 °C. The crystal of S isomer was obtained by slow evaporation of hexane solution.

¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 8.1 Hz, 2H), 7.20 (d, *J* = 7.9 Hz, 2H), 6.12 (dd, *J* = 10.4, 2.3 Hz, 1H), 5.40 (dd, *J* = 10.3, 3.6 Hz, 1H), 2.85–2.73 (m, 1H), 2.38 (s, 3H), 1.98 (dt, *J* = 12.6, 3.4 Hz, 1H), 1.80 (ddt, *J* = 13.2, 9.4, 4.9 Hz, 1H), 1.70–1.57 (m, 4H), 1.54–1.45 (m, 1H), 1.40–1.20 (m, 8H), 1.20–1.05 (m, 7H), 1.04–0.96 (m, 3H), 0.90 (d, *J* = 6.5 Hz, 3H), 0.86 (dd, *J* = 6.6, 2.0 Hz, 6H), 0.77 (s, 3H), 0.77–0.65 (m, 2H), 0.65 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ –97.39 (dd, *J* = 240.1, 14.4 Hz), –101.20 (dd, *J* = 240.0, 17.8 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 140.82, 139.40, 133.64 (t, *J* = 27.1 Hz), 128.70, 125.56 (t, *J* = 6.9 Hz), 123.84 (t, *J* = 246.2 Hz), 120.42 (t, *J* = 5.5 Hz), 56.47, 56.21, 50.65, 42.67, 42.11 (t, *J* = 26.6 Hz), 40.25, 39.93, 39.51, 39.36, 36.97, 36.15, 35.80, 35.56, 31.79, 28.24, 28.02, 28.01, 25.11 (t, *J* = 3.0 Hz), 24.17, 23.84, 22.82, 22.55, 21.25, 21.02, 18.65, 14.44, 12.16. HRMS (ESI, m/z): calcd. for C₃₅H₅₂F₂ [M]⁺ = 510.4037, found 510.4042. IR (film) 3029, 2931, 2867, 1466, 1381, 1209, 1154, 1042, 754 cm⁻¹.

Mechanistic Exploration Experiments

Control Experiments for Activation of *p*-Toluenesulfonyl Chloride (2a)

To an oven-dried 10 ml glass reaction tube, $Pd(OAc)_2$ (2.24–44.8 mg, 5–100 mol%), Li_2CO_3 (29.6 mg, 1.00 mmol), CuCl (24.0 mg, 0.240 mmol), *p*-toluenesulfonyl chloride (**2a**, 38.1 mg, 0.200 mmol) were added according to the variation of reaction parameters presented in Table S8. The reaction tube was then transferred in a glovebox, in which anhydrous 1,4-dioxane (0.50 mL) was added. The reaction tube was then sealed under a N₂ atmosphere and stirred in a preheated 120 °C oil bath for 21 h. Upon cooling, the mixture was filtered through a short silica gel column for GC and GC-MS analysis.

						Me	
2a	Pd(OAc) ₂ CuCl (1.2 equiv.) Li ₂ CO ₃ (2.0 equiv.) 1,4-Dioxane	Me	+ CI	Me	M	+ e	S
			Α	В			C
Entry	Pd(OAc) ₂	CuCl	Li ₂ CO ₃	Conversion	А	В	С
		(equiv.)	(equiv.)				
1	5 mol%	1.2	2.0	100%	37%	41%	20%
2	5 mol%	1.2	0	23%	16%	7%	0
3	5 mol%	0	2.0	40%	13%	25%	0
4	50 mol%	0	2.0	100%	48%	42%	0
5	100 mol%	0	2.0	100%	40%	52%	0
6	5 mol%	0	0	68%	14%	0	0
7	0	1.2	2.0	<2%	0	0	1%

Table S8. Control Experiments of *p*-Toluenesulfonyl Chloride (2a)^{*a*}

^a Conditions: 2a, 0.20 mmol; 0.50 mL 1,4-dioxane, N₂, reflux at 120 °C for 21 h. ^b Yields were evaluated by GC-MS and GC Analysis.

Control Experiments for 3aa Formation from 1a and 2a

To an oven-dried 10 ml glass reaction tube, $Pd(OAc)_2$ (0 or 5 mol%), Li_2CO_3 (0 or 2.0 equiv.), CuCl (0 or 1.2 equiv.), SIPr•Cl (0 or 10 mol%), *p*-toluenesulfonyl chloride (**2a**, 38.1 mg, 0.200 mmol) and difluoroalkene (**1a**, 75.6 mg, 0.450 mmol) were added according to the variation of reaction parameters presented in Table S9. The reaction tube was then transferred in a glovebox, in which anhydrous 1,4-dioxane (0.50 mL) was added. The reaction tube was then sealed under a N₂ atmosphere and stirred in a preheated 120 °C oil bath for 21 h. Upon cooling, the mixture was filtered through a short silica gel column for GC, GC-MS and crude ¹⁹F NMR analysis.

Table S9. Control Experiments of 3aa Formation from 1a and 2a^a

	1a + 0.45 mmol	2a — 0.2 mmol	5 mol% Pd(OA 10 mol% SIPr CuCl, (1.2 equ Li ₂ CO ₃ , (2 equ 1,4-dioxane, 0.2 21 h	c) ₂ ·Cl ·iv.) iv.) 25 M	F 3aa Cl F 5	F F	
Entry	Pd(OAc) ₂	SIPr-Cl	CuCl (equiv.)	Li ₂ CO ₃ (equiv.)	Conv. ^b	3aa ^c	5
1	5 mol%	10 mol%	1.2	2.0	100%	69%	0
2	5 mol%	10 mol%	0	2.0	100%	16%	28%
3	0	10 mol%	1.2	2.0	<3%	0	0
4	5 mol%	10 mol%	1.2	0	100%	-	-
5	5 mol%	0	1.2	2.0	100%	63%	0
6	5 mol%	10 mol%	0	0	15%	0	0
7	0	0	1.2	2.0	<3%	0	0
8	5 mol%	0	0	0	12%	3%	0
9	0	0	1.2	0	<3%	0	0
10	0	10 mol%	1.2	0	<5%	0	0
11	5 mol%	0	0	2.0	40%	20%	13%
12^{d}	5 mol%	0	0	2.0	100%	31%	32%

^a Conditions: 1a, 0.45 mmol; 2a, 0.20 mmol; 0.50 mL 1,4-dioxane, N₂, reflux at 120 °C for 21 h. ^b Trace amount of 4-chlorotoluene was observed. ^c

Yields was determined by GC analysis using dodecane as internal standard. ^d stoichiometric Pd(OAc)₂ (0.2 mmol, 1.0 equiv.) was used.

Radical Scavenger Experiments Study

To an oven-dried 10 ml glass reaction tube, $Pd(OAc)_2$ (5 mol%), Li_2CO_3 (2.0 equiv.), CuCl (1.2 equiv.), *p*-toluenesulfonyl chloride (**2a**, 1.0 equiv.) and **1a** were added subsequently. The reaction tube was then charged with radical scavengers (TEMPO, BHT. See Scheme 1–3), followed by addition of anhydrous 1,4-dioxane. The reaction tube was then sealed under a N₂ atmosphere and stirred in a preheated 120 °C oil bath for 21 h. Upon cooling, the mixture was filtered through a short silica gel column for GC (20 µL dodecane was used as internal standard) and GC-MS analysis (See picture 1).

Scheme 2. Full Reaction Using BHT as Radical Scavenger

Scheme 3. Half (1/2) Reaction Using BHT as Radical Scavenger

Picture 1. Crude Reaction Mixture Analysis of BHT Radical Scavenger Experiments

2,6-di-tert-butyl-4-(tosylmethyl)phenol

The compound was prepared according to the procedure mentioned above using *p*-toluenesulfonyl chloride (**2a**, 95.5 mg, 0.500 mmol) Pd(OAc)₂ (5.6 mg, 0.025 mmol), Li₂CO₃ (74.0 mg, 1.00 mmol), CuCl (60.0 mg, 0.600 mmol), SIPr•Cl (21.3 mg, 0.05 mmol), BHT (132 mg, 0.600 mmol) and 1,4-dioxane (1.5 mL) reflux for 21 h. Upon cooling, the mixture was filtered for GC-MS analysis. Then the combined filtrate was concentrated under vacuo and purified by silica gel column chromatography using EtOAc/Hexane as eluent (15%, Rf \approx 0.3) to afford the sulfonylation product [2,6-di-tert-butyl-4-(tosylmethyl)phenol] as colorless oil in 25% yield, 47 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 8.3 Hz, 2H), 7.21 (d, *J* = 8.3 Hz, 2H), 6.73 (s, 2H), 5.23 (s, 1H), 4.19 (s, 2H), 2.40 (s, 3H), 1.32 (s, 18H). ¹³C NMR (151 MHz, CDCl₃) δ 154.17, 144.29, 135.95, 134.92, 129.27, 128.89, 127.65, 118.94, 63.24, 34.10, 30.03, 21.52. HRMS (ESI, m/z): calcd. for C₂₂H₃₀O₃SNa [M+Na]⁺ = 397.1813, found 397.1375.

Deuterium Scrambling Experiments

3-Phenylpropanenitrile-2,2- d_2 was prepared according to a previous literature report.⁹ To a suspension of LiAlD₄ (672 mg, 16.0 mmol, 0.800 equiv.) in THF (32 mL, 0.50 M) at 0 °C was added methyl 2-phenylacetate (3.0 g, 0.020 mol, 1.0 equiv.). The ice bath was maintained for 2 h. Then, the suspension was stirred at 23 °C for 3 h. After cooling to 0 °C, a saturated solution of NH₄Cl_(aq.) was added dropwise into the mixture. The resulting precipitate was removed by filtration and washed with Et₂O (50 mL). The filtrate was concentrated under reduced pressure by rotary evaporation to afford the crude alcohol without further purification.

To a solution of the crude alcohol in CH_2Cl_2 (40 mL, 0.5 M) cooled in a 0 °C ice bath, MsCl (24 mmol, 1.2 equiv.), and Et_3N (40 mmol, 2.0 equiv.) were sequentially added dropwise. After addition, the ice bath was removed. The resulting mixture was stirred for 16 h at 23 °C. The mixture was quenched by addition of a saturated solution of $NH_4Cl_{(aq.)}$ (30 mL), and the organic phase was extracted with CH_2Cl_2 (3 × 30 mL). The combined organic phase was dried over anhydrous Na_2SO_4 , filtered, and concentrated under reduced pressure by rotary evaporation without further purification.

To a solution of above crude 2-phenylethyl-1,1- d_2 methanesulfonate (1.0 equiv) in MeCN (60. 0 mL) were sequentially added 18-crown-6 (13.2 g, 50.0 mmol, 2.50 equiv.), and KCN (3.0 g, 50 mmol, 2.5 equiv.). The resulting suspension was stirred at 23 °C for 16 h. The mixture was quenched by addition of NaOH_(aq.) (0.5 M) solution (50 mL), and then diluted with Et₂O (50 mL). The organic phase was extracted with Et₂O (3 × 30 mL)

and the combined organic phase was dried over anhydrous Na_2SO_4 , filtered, and concentrated under reduced pressure by rotary evaporation. Purification by flash column chromatography on silica gel (hexanes/EtOAc = 10:1) afforded 3-phenylpropanenitrile-2,2-d₂ as a colorless oil (1.37 g, 51% yield for 3 steps, >97% D).

(4,4-difluorobut-3-en-1-yl-2,2-d2)benzene (1q)

A solution of 3-phenylpropanenitrile-2,2-d₂ (5.0 mmol, 1.0 equiv.) in dry CH_2Cl_2 (20 mL, 0.25 M) was cooled to -70 °C, and DIBAL (1.0 M solution in toluene, 6.0 mmol, 1.2 equiv.) was added dropwise. The resulting mixture was stirred for 3 h, and then it was allowed to stir at 23 °C for 5 h. The mixture was quenched by addition of a saturated solution of NH₄Cl_(aq.) (15 mL). The aqueous phase was extracted with CH₂Cl₂ (3 × 30 mL) and the combined organic phase was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure by rotary evaporation without further purification.

Compound **1q** was prepared according to general procedure A using crude 3-phenylpropanal-2,2-d₂ (0.68 g, 5.0 mmol). Purification by using pentane (Rf \approx 0.7) as eluent afforded **1q** as a colorless oil in 45% yield after two steps (>97% D), 382 mg.

¹H NMR (500 MHz, CDCl₃) δ 7.30 (dd, J = 8.1, 6.9 Hz, 2H), 7.22 (d, J = 7.3 Hz, 1H), 7.20–7.15 (m, 2H), 4.15 (dt, J = 25.5, 1.2 Hz, 1H), 2.68 (s, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ –89.51 (dd, J = 47.3, 2.4 Hz), -91.60 (dd, J = 47.4, 25.3 Hz). ¹³C NMR (151 MHz, CDCl₃) δ 156.38 (t, J = 286.1 Hz), 140.97, 128.45, 128.44, 126.15, 77.25(t, J = 20.4 Hz), 35.52 (t, J = 2.7 Hz), 23.53 (m). HRMS (ESI, m/z): calcd. for C₁₀H₉D₂F₄ [M+H]⁺ = 171.0954, found 171.0946. IR (film): 2923, 1747, 1275, 1205, 1151, 913, 747 cm⁻¹.

D-labelled (*E*)-1-(1,1-difluoro-4-phenylbut-3-en-1-yl)-4-methylbenzene (3qa)

Compound **3qa** was prepared according to general procedure D using *p*-toluenesulfonyl chloride (**2a**, 38.1 mg, 0.200 mmol), **1q** (68 mg, 0.40 mmol), Pd(OAc)₂ (2.2 mg, 0.010 mmol), Li₂CO₃ (29.6 mg, 0.40 mmol), CuCl (24 mg, 0.24 mmol), SIPr•Cl (8.5 mg, 0.020 mmol), and 1,4-dioxane (0.5 mL). Purification by silica gel column chromatography using pentane (Rf \approx 0.3) as eluent afforded a colorless oil in 57% yield, 30 mg.

¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, *J* = 8.0 Hz, 2H), 7.34–7.28 (m, 4H), 7.25–7.21 (m, 3H), 6.59–6.40 (m, 0.82 H), 6.10 (dd, *J* = 15.9, 7.2 Hz, 0.46 H), 3.01 (t, *J* = 15.6 Hz, 1.07 H), 2.38 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ –94.67 (d, *J* = 15.5 Hz). ¹³C NMR (151 MHz, CDCl₃) δ 139.70 (t, *J* = 2.1 Hz), 136.88, 135.04, 134.15 (t, *J* = 26.5 Hz), 129.03, 128.50, 127.56 (d, *J* = 1.9 Hz), 126.26, 124.97 (t, *J* = 6.1 Hz), 121.98 (t, *J* = 242.7 Hz), 120.43 (dt, *J* = 18.5, 4.9 Hz), 42.55 (m), 21.24. HRMS (ESI, m/z): calcd. for C₁₇H₁₅D₂F₂ [M+H]⁺ = 261.1424, found 261.1494. IR (film): 2922, 1515, 1446, 1210, 1165, 1076, 817 cm⁻¹.

References

- 1. Zheng, J.; Lin, J. H.; Guo, Y.; Xiao, J. C. Chem. Commun. 2013, 49, 7513–7515.
- 2. Hu, J.-F.; Han, X.-W.; Yuan, Y.; Shi, Z.-Z. Angew. Chem. Int. Ed. 2017, 56, 13342–13346.
- 3. (a) Vinceno, C.; Nacci, A.; Monopoli, A.; Ferola, V. J. Org. Chem. 2007, 72, 2596–2601. (b) Mitchell-Ryan, S.;

Wang, Y.; Raghavan, S.; Ravindra, M. P.; Hales, E.; Orr, S.; Cherian, C.; Hou, Z.; Matherly, L. H.; Gangjee, A. J. Med. Chem. 2013, 56, 10016–10032.

- 4. Gao, B.; Zhao, Y.; Hu, M.; Ni, C.; Hu, J. Chem. Eur. J. 2014, 20, 7803-7810.
- 5. Prakash, G. K. S.; Hu, J.; Wang, Y.; Olah, G. A. Angew. Chem. Int. Ed. 2004, 43, 5203-5206.
- 6. Peake, C. J.; Cullen, T. G.; Martinez, A. J. Preparation of fluoroalkyl benzoates, alkanoates, ethers, and alcohols as pesticides. U.S. Patent 5081287 A, Jan 14, 1992.
- 7. Krishnamoorthy, S.; Kothandaraman, J.; Saldana, J.; Prakash, G. K. S. Eur. J. Org. Chem. 2016, 4965–4969.
- 8. Hesek, D.; Lee, M.; Noll, B. C.; Fisher, J. F.; Mobashery, S. J. Org. Chem. 2009, 74, 2567–2570.
- 9. Chen, Y.-F.; Romaire. J. P.; Newhouse, T. R. J. Am. Chem. Soc. 2015, 137, 5875–5878.