
Supplementary Information for:
A data-driven perspective on the colours of metal-organic
frameworks

Kevin Maik Jablonka1, Seyed Mohamad Moosavi1, Mehrdad Asgari2,3,
Christopher Ireland1, Luc Patiny4, Berend Smit1R

1 Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingenierie
Chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Sion, Swit-
zerland
2 Institute of Mechanical Engineering (IGM), School of Engineering (STI), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
3 Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de
Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
4 Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de
Lausanne (EPFL), CH-1015 Lausanne, Switzerland
R berend.smit@epfl.ch

Contents

1 Exploratory data analysis of the online survey 3

2 Perceptive spread in colours 13

3 MOF structures and colour labels 14
3.1 Elemental composition of the dataset . . . . . . . . . . . . . . . . 14

4 Model architecture 15
4.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Revised autocorrelation functions (RACs) . . . . . . . . 15

4.1.2 Additional linker features . . . . . . . . . . . . . . . . . . . 16

4.2 Hyperparameter optimization . . . . . . . . . . . . . . . . . . . . 16

4.3 Colourspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Sensitivity to the cutoff in the variance in perceptive spread
and using all datapoints from the survey as noisy labels 19

6 Performance measurement 22
6.1 Representative predictions . . . . . . . . . . . . . . . . . . . . . . . 22

6.2 Test in experimental compounds . . . . . . . . . . . . . . . . . . . 24

6.2.1 UiO−66−NH2 . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2020

mailto:berend.smit@epfl.ch


6.2.2 UiO-NDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.2.3 Mg-MOF-74 . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.2.4 Co-MOF-74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2.5 Zn-MOF-74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2.6 Sion-17 (first reported in this work) . . . . . . . . . . . . . 25

6.2.7 HKUST-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.2.8 Cu-TDPAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2.9 AlPMOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3 Examples of errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.4 Baseline models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.5 Permutation test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.6 Learning curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Feature importance analysis 35
7.1 SHAP interaction values . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Colour calibration 39
8.1 Semi-automatic colour calibration . . . . . . . . . . . . . . . . . . 39

8.1.1 Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8.2.1 Python implementation . . . . . . . . . . . . . . . . . . . . 42

8.2.2 JavaScript Implementation . . . . . . . . . . . . . . . . . . 43

9 Telegram chatbot 44

10 Web app 47

2



1 Exploratory data analysis of the online survey

We invited our followers on Twitter to participate in the survey, and also
shared the link to the survey with all members of the schools of basic
science and engineering at EPFL. In total, 4184 colours were picked by
the participants. Participants could take the survey as often as they wished.

In Supplementary Figure 1 we show the distribution of the time the user
took to pick a colour in our survey. The distribution is skewed, with a mean
of 34.8 s and a median of 21.6 s. The maximum is 4113 s, the minimum is
0.76 s.
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Supplementary Figure 1 | Distribution of the time the users needed to pick a
colour. The smooth line represents a Gaussian kernel density estimate.

From the analysis, we eliminated 309 entries for which the users took less
than 5 s (ca. 2.6 %) or more than 80 s (ca. 4.9 %).

It is interesting to analyse for which colour strings the users took most or
least time. These are shown in Figure 2, where it is observable that there is
a striking spread in the median time participants took to select the colour
depending on the colour name.
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Supplementary Figure 2 | Boxplots for the time taken to select the colours. The
dotted line shows the median. Bars coloured using the median colour (unweighted
median in red, green, blue (RGB) space).

For use in scholarly communication, the name must be unambiguous. As
a surrogate for the ambiguity we use the variance of the colour picks in
RGB space. Care has to be taken here as the sensitivity of the human eye is
not uniform across the whole colour space, wherefore we also calculated
standard deviations that attempt to take this into account by weighting the
channels with the luma weights, i.e., the red channel with 0.299, the green
channel with 0.587, and the blue channel with 0.114.
We furthermore removed outliers using a z = 2.5 threshold on each colour
channel.

We show the colours with maximum and minimum standard deviations
in RGB space in Supplementary Figure 3. Both in the unweighted and
weighted measurement yellowish colours show a high standard deviation.
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Supplementary Figure 3 | Maximum and minimum weighted and unweighted
standard deviations in RGB space. Bars coloured in the median colour, the dotted
line indicates the median.

One can get a good intuition for the choices of the participants by showing
the choices for each colour term next to each other, as shown in Supplemen-
tary Figures 4–6. Interestingly, it is observable that some colour names like
amber, that are less widely used, show a high variance. This is likely due
to a linguistic problem. But also for more common colour names such as
“yellow red” or “deep yellow” we observe a considerable variation in the
colours that were picked by the users.
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Supplementary Figure 4 | Colours picked by the users in our online survey. After
data cleaning. Continued in Supplementary Figures 5 and 6.
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Supplementary Figure 5 | Colours picked by the users in our online survey. After
data cleaning. Continued in Supplementary Figure 6.
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Another interesting question to ask is whether there is a relationship
between the variance and the time the users take to select a colour, which
might indicate that there are some colours for which observers are generally
more uncertain. The alternative could mean that for some colours there
is simply a wide range in perception that is independent of how certain
the participants are, i.e., how long they take to pick a colour. Notably,
we observe no correlation (cf. Supplementary Figure 7), especially for the
unweighted variance.
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Supplementary Figure 7 | Scatter plots showing plotting the (weighted) standard
deviation against the time taken. The deviation for the ∆E∗ab is calculated as√

∑i(∆E∗ab(xi ,µ1/2))
2
/N−1, where ∆E∗ab(xi, µ1/2) is the colour difference between the ith

colour and the median. 95 % prediction intervals, as determined using the
bootstrap technique, shown as shaded region. Pearson correlation coefficients:
weighted 0.14 (p = 0.08), unweighted: 0.04, (p = 0.62), ∆E∗ab 0.18 (p = 0.02).
Spearman correlation coefficients: weighted 0.16 (p = 0.05), unweighted: 0.04
(p = 0.62), ∆E∗ab 0.14 (p = 0.1).

The use of our survey data to encode the colour strings is much more
useful if our results are representative. A good way to estimate if this
is the case is to compare our results with the ones from the xkcd survey,
where nearly half a million users were asked the reverse question, i.e.,
to give a name to a colour which they were shown. The comparison is
shown in Supplementary Figure 8: The median colour of our cleaned survey
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data is generally close to the result from the xkcd survey. We find a mean
µ(∆E∗ab) = 8.4 and a median µ1/2(∆E∗ab) = 6.9, these values are smaller than
the average variance in our survey.
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Supplementary Figure 8 | Comparison of colours for which there is an overlap
between the xkcd survey and our survey. We aggregated our data using the mean
of the cleaned data. Continued in Figure 9.
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Supplementary Figure 9 | Comparison of colours for which there is an overlap
between the xkcd survey and our survey. We aggregated our data using the mean
of the cleaned data. Continued from Figure 8.

12



2 Perceptive spread in colours

Supplementary Figure 10 shows the cumulative distribution of the difference
between the colours that were picked in our survey for a given colour string.
To reflect that the use of colour strings is not uniform in the Cambridge
Structure Database (CSD), we also weight those mean differences by the
frequency of the colour string in the metal-organic framework (MOF) subset
of the CSD.
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Supplementary Figure 10 | Cumulative distribution of mean pairwise ∆E∗ab for the
in survey differences of the colours. In case of the weighted distribution, the data
were weighted by the frequency of the colour string in the MOF subset of the CSD.

This plot shows that for most colours the difference in perception is so
large that the difference in colours that people pick for the same colour
string is so large that it would not comply with common colour reproduc-
tion standards—potentially also limiting how well the reproducibility of
syntheses can be assessed.

Importantly, this plot also shows that we cannot choose a too tight cutoff
on the variance of the colours as we would otherwise too drastically limit
the size of our training set. To trade-off the size of the training set and
the variance of the perception we chose to only include colours in our
training set for which the mean pairwise ∆E∗ab is below 16 (vertical line in
Supplementary Figure 10).
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3 MOF structures and colour labels

For this study, we used a subset of structures from the Computation-Ready,
Experimental (CoRE)-2019 MOF database,1 for which the colour was de-
posited in the CSD version 5.4 (November 2019).2 We used the CSD Python
API to retrieve the colour attribute of the CSD entries. We restricted our-
selves to structures from the CoRE-MOF database as the code that gen-
erates the revised autocorrelation (RAC) assumes that the structures are
non-disordered.
For 9525 structures in the CoRE database we could generate RAC finger-
prints (we reused the ones we generated for the work by Moosavi et al.3).
For 8632 of structures in the CoRE database we found a colour in the CSD.
After filtering out structures for which featurization failed or the colour label
showed a too high variance in our survey we ended up with 6423 structures,
from which we dropped 590 duplicates to avoid data leakage and biases.

3.1 Elemental composition of the dataset

The complete dataset, i.e., training, validation and test set combined had the
following element counts (counts incremented by one if element present in
the structure): C: 5547, H: 5294, O: 4941, N: 3657, Zn: 1074, Cu: 940, Cd: 619,
Co: 603, P: 498, S: 415, Mn: 361, Ni: 258, Ag: 248, Eu: 194, Fe: 165, Cl: 162,
Tb: 158, F: 147, Gd: 135, La: 125, Nd: 106, Na: 105, Mg: 104, Dy: 100, Sm: 93,
Mo: 91, I: 90, In: 90, Er: 86, Ca: 85, U: 85, W: 75, Pr: 66, K: 64, Al: 61, V: 60, Si:
59, Ce: 58, Ga: 55, Ho: 47, Br: 47, Yb: 41, Sr: 40, Cr: 35, Ba: 33, Y: 32, Li: 32, B:
24, Tm: 20, Ru: 19, Pt: 18, Sc: 18, Au: 15, Be: 12, Re: 12, Pd: 10, Lu: 10, Se: 10,
Nb: 9, Cs: 8, Hg: 6, Bi: 6, Pb: 6, As: 5, Ge: 5, Th: 5, Hf: 5, Rb: 5, Sb: 4, Sn: 4,
Ir: 2, Rh: 1.
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4 Model architecture

During the development of the model we experimented with many model
architectures going from Bayesian neural network (BNN), over Gaussian
process regression (GPR) (with coregionalized kernels) to gradient boosted
decision tree (GBDT). Many of our development attempts are tracked on
comet.ml (https://www.comet.ml/kjappelbaum/color-ml?shareable=jfE6o
kDmxlnYimYFFnsJcMCO6) and wandb4 (https://app.wandb.ai/kjappelbaum
/colorml/) and the corresponding code is also available on GitHub (https:
//github.com/kjappelbaum/colorml).

Finally, we decided to use the LightGBM5 implementation of GBDT as
it implements the quantile loss, which can be used to also predict pre-
diction intervals. By switching the loss function to quantile loss one can
use these models to predict the estimated prediction intervals.6 The quan-
tiles of some conditional distribution P(Y|x) estimate fα(x) = y subject to
P(Y < y|x) = α (α ∈ (0, 1)). For example, the 0.5 quantile is just the median
and corresponds to minimising the mean absolute error, which is symmetric
for over- and underprediction. The loss for other quantiles penalises neg-
ative errors more (for higher quantiles) or less (for lower quantiles) than
positive errors. In this work, we trained a GBDT to predict the median and
the 10th as well as the 90th percentile of the colour channels, which allows
us to provide estimated prediction intervals.

4.1 Features

4.1.1 Revised autocorrelation functions (RACs)

Difference RACs are computed as follows

start
scopePdiff

d =
start

∑
i

scope

∑
j
(Pi − Pj)δ(di,j, d), (1)

where, atomic property P of atom i (part of the start atom list) is correlated
to atom j (part of the scope atom list) when they are separated by d number
of bonds.

Analogously, product RACs are defined as

start
scopePdiff

d =
start

∑
i

scope

∑
j
(PiPj)δ(di,j, d). (2)

For this work we considered a maximum depth of three. More details
about the implementation can be found in Moosavi et al.3

15

https://www.comet.ml/kjappelbaum/color-ml?shareable=jfE6okDmxlnYimYFFnsJcMCO6
https://www.comet.ml/kjappelbaum/color-ml?shareable=jfE6okDmxlnYimYFFnsJcMCO6
https://app.wandb.ai/kjappelbaum/colorml/
https://app.wandb.ai/kjappelbaum/colorml/
https://github.com/kjappelbaum/colorml
https://github.com/kjappelbaum/colorml


4.1.2 Additional linker features

Using the SMILES extracted using the MOFid code7, we computed for the
linkers

• number of tertiary amide groups

• number of ester groups

• number of carbonyl groups

• lgP

• molar refractivity

• number of aromatic bond

• number of aromatic rings

• number of double bonds

We considered both the sum and the average of those counts for all linkers
in a primitive cell of a MOF as descriptors.

4.2 Hyperparameter optimization

We performed a hyperparameter optimisation over a wide range of param-
eters using the Bayesian optimiser (using Gaussian processes as surrogate
models) and hyperband algorithm implemented in wandb.8 We used the
5-fold cross-validated error as the empirical error estimate.

For efficiency reasons, we the estimators for different colour channels
shared hyperparameters. The ranges we considered and the hyperparame-
ters which we used in the final model are listed in Supplementary Table 1.

The influence of the different hyperparameters is shown as a parallel
coordinates plot in Supplementary Figure 11.
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Supplementary Table 1 | Range of hyperparameters considered and their final
values for the models. The names in parentheses indicate the run names on wandb.

parameter name range final value
median (run
laced-sweep-20)

final value
0.1 (run
vague-sweep-48)

final value
0.9 (run
cerulean-sweep-157)

n_estimators (100,
5000)

4983 454 4813

max_depth (5, 100) 99 20 100
num_leaves (5, 500) 448 417 256
reg_alpha (0.00001,

0.4)
1.432 1.356 1.046

reg_lambda (0.00001,
0.4)

1.04 1.17 1.343

subsample (0.01, 1.0) 0.3613 0.1287 0.8991
colsample_bytree (0.01, 1.0) 0.9262 0.7345 0.3986
min_child_weight (0.001,

0.1)
0.08181 0.01801 0.0484

Supplementary Figure 11 | Parallel coordinates plot showing the cross-validated
score as a function of the hyperparameter settings for the median model,
highlighted are the settings for the best performing models.

4.3 Colourspaces

There are different spaces in which one can define colours, between which
one can convert with (non)-linear transformations. The most commonly
used colourspace is the sRGB colourspace, but it is typically found that
other colour spaces such as Hue, Saturation and Luminance (HSL) can give
better performance in some applications. Generally, one can distinguish
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between human- (e.g., HSL), hardware- (e.g., RGB) and instrument-oriented
(e.g., CIE 1976 L*a*b* (CIELAB)) colour spaces.9;10 In initial experiences,
we varied the colourspace between RGB, HSL and CIELAB. We performed
the transformation between the different colour spaces using the Colour
Python package.11 Typically, we found the RGB colourspace to perform best,
wherefore we used it in the final model.
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5 Sensitivity to the cutoff in the variance in perceptive
spread and using all datapoints from the survey as
noisy labels

Following the analysis of Supplementary Figure 10 we investigated how the
predictive performance of our model depends on the cutoff we choose for
the variance in the perception of the colours (Supplementary Figure 12, i.e.,
the mean pairwise ∆E∗ab between the colours picked by the participants of
our survey).
To allow for a fair comparison, we first split of a holdout set of the full
database (after the preprocessing steps described in section 1) and then
applied the threshold on the perceptive variance on the training set. We
considered a threshold of 5, 16, as well as no threshold at all on the mean
pairwise ∆E∗ab between the survey responses for any given colour.

Moreover, one can imagine that one could use all the data from the survey
in such a way that the same MOF is presented to the model multiple times
with the different colours our survey participants picked for a given colour
string. This is, one MOF feature vector would be mapped to multiple RGB
values during training. Those values might be quite similar (for the low
threshold on the in-survey variance) or dissimilar (if we do not apply a
threshold). This is similar to the addition of noise to labels that is sometimes
used to reduce overfitting. To understand the influence of this effect, we
trained our model only on the medians of the survey results (one MOF
mapped to one RGB value during training) or on all colour labels (one MOF
mapped to one RGB value during training) with 50 different train/test splits
and measured the ∆E∗ab on the two different test sets. For efficiency reasons
(and also following the low sensitivity on the hyperparameter settings that is
evident from Supplementary Figure 11) we chose the same hyperparameters
for all training sets.
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Supplementary Figure 12 | Effect of the variance in the training data on the
predictive performance of the model. The histograms show the test errors of 50
independent runs, with new train/test splits. The left column shows the predictive
performance on a holdout set which only includes colours with a perceptive
variance lower than the threshold. The right column is a constant holdout test set
that includes all colours (i.e., we applied no threshold on the variance in the
perception). The colours indicate if the model was trained on the means of the
survey responses or on all data points. In latter case, one MOF would be mapped
to multiple RGB values. The rows show the experiments for different thresholds on
the mean pairwise ∆E∗ab of the colours picked in the survey.

We observe that if we apply a threshold, the use of all responses in the
survey (i.e., showing the same structure with different RGB values to the
model) tends to lead to overfitting (as expected, we observe the best perfor-
mance on the test set drawn from the same distribution) and poor transfer.
If we train on all colours, this approach also leads to poor generalisation
on a test set drawn from the same distribution. Analysing the results we
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get from training only on the median, a threshold of 16 seems to be least
prone to overfitting. It is easy to understand why the tight threshold of 5
performs badly: We drastically limit the number of training points and the
chemical space our model sees during training. In contrast, for the case
without threshold, there are more responses with a high variance that are
prone to be wrong and the data is more difficult to learn for the model.

For these reasons we trained our models on the medians of colours with a
in-survey mean pairwise colour distance of ∆E∗ab < 16.
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6 Performance measurement

6.1 Representative predictions

The predictions for 100 random structures of the test and train set are shown
in Supplementary Figure 13 and Supplementary Figure 14.
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Supplementary Figure 13 | Random 100 predictions of our model on a holdout
test set.
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Supplementary Figure 14 | Random 100 predictions of our model on the training
set.
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6.2 Test in experimental compounds

To test our model we took photos from some structures of our experimental
colleagues and excluded structures which descriptor are closer (Manhattan,
p = 1, distance) than 0.02 to one of the test structures from our training set.
All structures except Sion-17 have been prepared according to published
procedures. Sion-17 is a MOF that has not been reported so far. We chose
to include it in our test set due to the rather unusual chemistry with a Pd
porphyrin.

For UiO-66-NH2(Nb) we used the samples prepared the work reported
by Syzgantseva et al.12

6.2.1 UiO−66−NH2

UiO-66-NH2 was synthesised by a method adapted from Cavka et al.13

Briefly, stock solutions of the zirconium precursor (320 mg of zirconium(IV)chloride
(ZrCl4 Aldrich), sonicated in 20 mL of DMF) and ligand (240 mg of 2-aminoterphthalic
acid (H2BDC-NH2, Aldrich), dissolved in 20 mL DMF) were prepared. 2 mL
of each solution was pipetted into 10× 12 mL glass reactor vials. The reactor
vials were heated to 120 ◦C for 48 hours, then cooled at a rate of 0.2 ◦C min−1

to room temperature. The resulting pale-yellow material was combined and
washed by centrifuge x 3 with DMF (40 mL), and x 2 with methanol (40 mL),
and left overnight to dry at room temperature

6.2.2 UiO-NDC

UiO-66-NDC was synthesised by a method adapted from Cavka et al.13

25 mg of of zirconium(IV)chloride (ZrCl4, Aldrich), and 25 mg of 1,4-Napthalene-
dicarboxylic acid (H2NDC, Aldrich) was added to a 12 mL reactor vial con-
taining 4 mL of DMF. The solution was sonicated for 5 minutes, to afford a
clear yellow tinged solution, and then 0.1 mL of acetic acid was added. The
vial was then sealed, and heated to 120 ◦C for 48 hours, then cooled at a rate
of 0.2 ◦C min−1 to room temperature. The resulting material was washed by
filtration by 3 x 10 mL of DMF, and 1 x 10 mL of acetone, and left overnight
to dry at room temperature.

6.2.3 Mg-MOF-74

Mg-MOF-74 was synthesised by a method adapted from Millward and
Yaghi.14 125 mg of magnesium(II)nitrate hexahydrate (Mg(NO3)2.6H2O,
Aldrich) and 100 mg of 2,5-dihydroxyterephthalic acid (H2HBSC) was added
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to a 25 mL glass reactor containing 10 mL of DMF. After sonicating for
10 min, 0.5 mL of 1 propanol, and 0.5 mL of water was added to the solu-
tion. The reactor was sealed, and then heated to 100 ◦C for 20 hours, and
then cooled at a rate of 0.1 ◦C min−1 to room temperature. The resulting
crystals were washed with DMF by syphoning off the mother liquor with a
pipette, and replacing with 10 mL of DMF. After gently shaking the vial, the
DMF was again syphoned off and replaced with fresh DMF. This procedure
was repeated 5 times. The crystals were then filtered, and allowed to dry
overnight on the filter paper at room temperature.

6.2.4 Co-MOF-74

A mixture of cobalt(II)nitrate hexahydrate (970 mg, 4.61 mmol), 2,5-dihydroxyterephthalic
acid (198 mg, 999 µmol), ethanol (27 mL), N,N-dimethylformamide (27 mL,
349 mmol, 1 eq.), and water (27 mL, 1.5 mol, 4.29 eq.) was transferred into a
250 mL Pyrex jar. The jar was placed for 10 min in an ultrasonic bath until
a transparent solution was reached. The glass jar was sealed and kept at
100 ◦C in an oven for 24 h. After that, the dark red crystals were filtered and
washed with ethanol three times. Then, the product was allowed to be air
dried.

6.2.5 Zn-MOF-74

A mixture of 2,5-dihydroxyterephthalic acid (240 mg, 1.21 mmol), zinc ni-
trate hexahydrate (720 mg, 2.42 mmol), water (3 mL) and N,N-dimethylformamide
(27 mL) were transferred into a 100 mL pyrex jar. The jar was placed for
10 minutes in an ultrasonic bath until a transparent solution was reached.
The glass jar then was sealed and kept at 120 ◦C in an oven for 3 days. After
that, the yellow crystals were filtered and washed with ethanol three times.
Then, the product was allowed to be air dried.

6.2.6 Sion-17 (first reported in this work)

10 mg of Pd(II) meso-Tetra(4-carboxyphenyl)porphine (H4-TpCPP-Pd, Fron-
tier Scientific) was placed into a 12 mL glass reactor, in addition to 5 mg of
Zinc(II)nitrate hexahydrate (Zn(NO3)2.6H2O), and 1 mg of adenine (C5H5N5,
Alfa Aesar) to act as a mediator. To this, 2.5 mL of DMF was added, and
the solution was sonicated for 10 min. After sonication, 0.5 mL of water was
added, and then the solution was acidified with 400 µL of 1M nitric acid.
The reactor was then sealed and heated to 120 ◦C for 72 hours, then cooled
to room temperature at a rate of 0.2 ◦C min−1. The resulting crystals were
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washed with DMF by syphoning off the mother liquor with a pipette, and
replacing with 5 mL of DMF. After gently shaking the vial, the DMF was
again syphoned off and replaced with fresh DMF. This procedure was re-
peated 5 times. The crystals were then filtered and allowed to dry overnight
on the filter paper at room temperature.

Supplementary Figure 15 | PXRD for as synthesised Sion-17.

6.2.7 HKUST-1

1,3,5-benzenetricarboxylic acid (210 mg, 999 µmol) and copper(II)nitrate
hemi(pentahydrate) (348 mg, 1.5 mmol) were added to a 12 mL microwave
vial. To this, N,N-dimethylformamide (2.5 mL), ethanol (2 mL) and finally
water (500 µL) were added. The vial was then capped and crimped, and
sonicated until the material dissolved (approx. 2 min). A clear, pale blue
solution was formed.

The vial was placed in a microwave, and heated at a power of 200 W to
140 ◦C for 20 min. The microwave was then cooled for 8 min to 40 ◦C.

A blue powder was formed. The material was washed by centrifugation
(5 x 30 mL N,N-dimethylformamide) in a 50 mL size centrifuge tube at
4000 rpm for 5 min. The solvent was removed from the centrifuge tube, and
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the material was then allowed to dry in the centrifugation tube at room
temperature over 2 days.

Approximately 100 mg of material was activated for 24 h at 200 ◦C under
vacuum in a Schlenk tube. The blue colour darkened.

6.2.8 Cu-TDPAT

2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine (422 mg, 682 µmol), cop-
per(II)nitrate trihydrate (2.31 g, 11 mmol), N,N-dimethylacetamide (30 mL),
1,4-dioxane (30 mL), water (1.5 mL), and fluoroboric acid (13.5 mL) were
mixed and stirred for 5 minutes in a 250 mL jar. Then, the solution was
located inside the 85 ◦C oven for 3 days. Then it was taken out of the oven.
After decanting the hot mother liquor, the crystals were rinsed with DMAc
and methanol and dried. In order to activate the sample, firstly, the solvent
exchange process should be done. In order to do this and also to ensure the
extraction of any unreacted ligand, the material was inserted into a thimble
and washed extensively with methanol in a soxhlet apparatus overnight.
The solvent-exchanged sample then was activated by heating at 150 ◦C for
12 hours under vacuum. The sealed activated sample then was transferred
into the glove box.

6.2.9 AlPMOF

Al-PMOF was synthesised by a method adapted from Fateeva et al.15 100 mg
of meso-Tetra (4-carboxyphenyl)porphine (H4-TpCPP-H2, Frontier Scien-
tific), and 60 mg of aluminium(III)chloride hexahydrate (AlCl3.6H20) were
added to a 23 mL PTFE reactor. To this, 8 mL of milipore water was added,
and 2 mL of DMF. The reactor was placed into a Parr Vessel, and heated to
180 ◦C for 16 hours, then cooled to room temperature at a rate of 1.5 ◦C min−1.
The product was washed by centrifuge x 5 with DMF, and x 2 with acetone,
and left to dry overnight at room temperature.
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6.3 Examples of errors

In the following, we discuss some cases where our prediction is distant
(∆E∗ab > 30) from the colour reported in the CSD and for which we found a
report of the colour in the original journal article.
We see that in some instances the colour deposited in the CSD is not the
same as the one reported in the original reference. Of course, sometimes our
model is also simply wrong. Values in parentheses give the RGB coordinates,
names are typically the closest HTML colour names.

• SOQHIR01 is deposited in the CSD as orange, the paper reports colour-
less rod-like crystals.16 We predict old lace (240, 232, 218).

• IZOWEA is reported as red in the CSD and as dark red in the paper.17

We predict a burgundy colour (99, 36, 64) which closest HTML name
pale violet red.

• YORLEY is reported in the CSD as yellowish green crystals that turn
orange within a week.18 We predict a rosy brown (215, 150, 143).

• PUPYAA is reported in the CSD and the paper19 as yellow. We predict
plum (181, 123, 170).

• PULDOQ is reported in the CSD as yellow and as blue block crystals in
the paper.20 We predict a pale violet red (162, 73, 105).

• GAMXAV is reported in the CSD and the paper21 as red. We predict a
dark blue colour (14, 0, 144).

• NEGMUI is reported in the CSD and the paper22 as red. We predict a
peru color (235, 175, 72).

• FIFMIS is reported in the CSD and the paper23 as red. We predict a
medium violet red (223, 41, 143).

• AVUCEA is deposited in the CSD as red and also described as such in the
paper24. We predict a medium violet red (204, 34, 192).

• GIVHIC is reported in the CSD and the paper25 as red. We predict a
plum color (169, 110, 148).

• MAGBUT01 is reported in the CSD and the paper26 as yellow. We predict
a peru color (214, 142, 58).

• POHWIU is reported as red in the CSD and as dark red in the paper.27

We predict a dark magenta (180, 12, 182).
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• FOLLEZ is reported as pink in the CSD and as colorless in the paper.28

We predict alice blue (224, 230, 240).

• GARMAQ is reported in the CSD as black and as brown in the paper29.
We predict rosy brown (164, 127, 114).

• DOZCEC is reported in the CSD as brown and in the paper as brownish-
red30. We predict pale violet red (213, 120, 140).

• WOPWOO is deposited in the CSD as dark red and as dark violet in the
paper.31 We predict a light pink (216, 147, 178).

• YICGOI is deposited as orange in the CSD and reported as such in the
paper.32 We predict a medium violet red (218, 36, 147).
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6.4 Baseline models

Before building the GBDT models we evaluated the performance of some
simple baseline models. This is important to understand what the minimum
performance one can expect. Some metrics are summarised in Supplemen-
tary Table 2 and examples of the predictions on a test set are shown in
Supplementary Figures 16 and 16.

Supplementary Table 2 | Errors computed in normalised colour space and
aggregated with uniform average.

model r2 score MAE MSE mean ∆E∗ab

mean baseline 0.00 0.31 0.13 30.2
median base-
line

-0.31 0.24 0.17 28.6

knn (k=1) -0.03 0.19 0.14 20.8
knn (k=4) 0.18 0.22 0.11 24.9

  purple
  colorless
  colorless
  purple
  colorless
  purple
  light yellow
  blue
  colorless
  colorless
  yellow
  pink
  colorless
  black
  colorless
  colorless
  dark brown
  green
  yellow green
  colorless
  red
  colorless
  colorless
  colorless
  green

prediction median RGB for label

Supplementary Figure 16 | Predictions of a mean baseline on random test
samples.
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Supplementary Figure 17 | Predictions of a median baseline on random test
samples.
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Supplementary Figure 18 | Comparison of the performance of dummy models
with the one of our GBDT model. Violinplot shows the distribution of metrics for
5000 bootstrap samples of the test set.
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6.5 Permutation test

One method to assess whether the model learned a meaningful association
between features and target is to perform a permutation test.33 For effi-
ciency reasons, we performed this test with only 500 training points and 100
permutations, using the permutation_test_score function in sklearn (see
Supplementary Figure 19).

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
r2 score

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
permuted
unpermuted

Supplementary Figure 19 | Result of a permutation test (p = 0.0099).
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6.6 Learning curve

Learning curves for the GBDT model are shown in Figure 20. We observe
that the curves did not saturate, i.e., that we could improve our model if
we would have more data and that our representation allows the model to
learn. (For example, for a non-unique representation one would expect a
flat learning curve.34)
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Supplementary Figure 20 | Learning curves for the GBDT trained with 0.5
quantile loss for the r2 score, the MAE, and the ∆E∗ab. For the learning curves, we
sampled ten different training sets, trained the models, and tested on a test set, and
show the standard deviation between the ten runs as errorbars.
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7 Feature importance analysis

For the blue colour channel, we find high importance (higher than, e.g., the
number of double bonds or aromatic rings) of the octanol/water partition
coefficient lg P of the linker, which is typically used to quantify hydropho-
bicity/lipophilicity. To understand the importance of the features better it
can be instructive to analyse some ligands in our dataset that minimise or
maximise the features. Obviously, just using lg P alone is not predictive—
but it can help our model to make good first splits and then refine those
based on other features (cf. Figure 21).

Supplementary Figure 21 | Some examples of ligands that minimise and
maximise lg P. The numbers in the ligand report the sum of the lg P across all
unique ligands in the MOFs.

7.1 SHAP interaction values

One feat of the SHAP analysis is that it can provide insights into feature
interactions. In Supplementary Figures 22–24 we show the strongest abso-
lute interaction values. We can see that the metal-ligand interactions are
strongest for the blue colour channel but play a role for every colour channel.
Interaction values are shown for a random subset of 1000 structures from
the training set.
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Supplementary Figure 22 | Highest absolute SHAP interaction values for the red
colour channel.
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Supplementary Figure 23 | Highest absolute SHAP interaction values for the
green colour channel.
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Supplementary Figure 24 | Highest absolute SHAP interaction values for the blue
colour channel.
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8 Colour calibration

We used the Spydercheck Checker 24 colour rendition chart with the accom-
panying software to create a correction profile for Adobe Lightroom, which
we used for initial comparisons. All processing of the photos was performed
in Adobe Lightroom, ImageJ or macOS Preview.

8.1 Semi-automatic colour calibration

Using a colour rendition chart, one can calibrate the colour—either using
photo editing software like Lightroom or Photoshop together with the colour
rendition chart. The most important step in this process is the correction of
the white balance.

We perform the neutralisation before the colour calibration by dividing
and then multiplying the image by the reference colour of the grey neutral 5
(.70 D) swatch.

8.1.1 Caveats

Colour calibration is extremely sensitive to spotlight effects, i.e., when one
part of the image is much brighter than another part (see also a correspond-
ing issue on GitHub https://github.com/danforthcenter/plantcv/issu
es/254). To detect if this is a problem one can analyse the image profile, for
example, using ImageJ (see Supplementary Figure 25).
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Supplementary Figure 25 | Example of non-uniform lightning that can be easily
analysed with the profile function (CMD + K after selection a part of the image) in
ImageJ. The yellow marked region is analysed for the profile.

Additionally, the Python version of the colour calibration code also out-
puts parity plots for which all points should fall on the diagonal (see Sup-
plementary Figure 26). If this is not the case for only a few patches one can
attempt to exclude those from the calibration. Otherwise, (see Supplemen-
tary Figure 27), we recommend retaking the photo with better lighting.
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Supplementary Figure 26 | Example of the parity plot for a perfect calibration.

Supplementary Figure 27 | Example of the parity plot for an unreliable
calibration.
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Supplementary Figure 28 | Lightbox setup used to take photographs of the
powders.

In practice, spotlight effects can be avoided by means of a diffuser and by
taking the photographs from some distance. We used a setup as shown in
Supplementary Figure 28, where we use a lightbox to reduce shadows and
ensure homogeneous illumination.

Additionally, for colour calibration, we have to keep in mind that typically
the illuminant changes and is different from the reference values we use in
the software (CIE D50). We are planning to investigate approaches in which
the illuminant is inferred from images using machine learning (ML).35;36

Note also that we took some photos through the glass of a vial (e.g., when
we wanted to measure the colour of an activated material). In this case,
the glass can slightly distort the colour measurement. Also note that for
powders the result will depend on the powder density, i.e. air to grain ratio.
For this reason some recommend measuring the powder in the form of a
tablet.37 To minimise effects of light trapping38 between the particles and
increase reproducibility we found that the sample thickness should be at
least half a centimetre.

Furthermore, we observed a significant variability of colour for different
batches of the same material. This is also reflected in the literature, for
example for Ni-MOF-74, for which both yellow-green39 and yellow-brown40

have been reported.

8.2 Implementation

8.2.1 Python implementation

For the Python implementation we built a Dash app and use the imple-
mentation in colour-checker-detection for detection of the colour rendi-
tion card.41 We offer the user a selection of calibration algorithms (polyno-
mial expansions using the Vandermonde method, the method proposed
by Cheung et al.42 and by Finlayson et al.43), which are implemented
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in the colour Python package.44 By default we use the algorithm pro-
posed by Finlayson et al. Operations on the colours are performed in
linear sRGB space (applying the decoding colour component transfer func-
tion (CCTF) to the non-linearly encoded images). The code is, together
with a Dockerfile which we use for deployment, available on GitHub
(https://github.com/kjappelbaum/colorcalibrator).

8.2.2 JavaScript Implementation

We are currently implementing semi-automatic colour calibration in JavaScript
(ES2015). The source code is available on GitHub (https://github.com/kja
ppelbaum/colorcal). In general, our implementation follows the algorithms
described by Sunoj et al.45 For the patch selection, the user selects the edges
of a colour calibration card. Using geometric reasoning, we determine the
coordinates of the 24 patches of the colour calibration card—also in case of
moderate tilt or bad alignment. We only assume that the full card is visible
in the image. For each patch, we select a rectangular region of interest (ROI)
in which we compute the average RGB colour.

43

https://github.com/kjappelbaum/colorcalibrator
https://github.com/kjappelbaum/colorcal
https://github.com/kjappelbaum/colorcal


9 Telegram chatbot

To facilitate the upload of photos of the synthesised compounds into the
ELN,46 we developed a prototype of a Telegram chatbot using the PyTelegramBotAPI
Python package.47 The code of the prototype is available on GitHub (https:
//github.com/kjappelbaum/elnbot). An example from the first interaction
(asks for the EPFL username) to the upload of an image is shown in Supple-
mentary Figure 29.

The ELN employed by us already supports automatic upload from several
instruments via samba shares. For the chatbot we simply save an image
with the correct filename (including the username, sample name, and batch
number) on a samba share from which a script takes over to attach the image
to the correct entry in the ELN via the CouchDB.
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Supplementary Figure 29 | Screenshot of the interaction with the Telegram
chatbot that can be used to upload an image to the ELN.
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Supplementary Figure 30 | Screenshot of the image attached to a sample in the
ELN.

We investigate extending the chatbot to allow interaction with more fea-
tures of the ELN.
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10 Web app

We implemented the web app (see Supplementary Figure 31) for the colour
prediction using Dash48 and use crystaltoolkit49 to visualise the structures.
On the GitHub repository (https://github.com/kjappelbaum/mofcolori
zer) we provide a Dockerfile that allows building a Docker image that can
be used to run this image on any platform. For example, we deploy the
image on a Dokku instance (https://go.epfl.ch/mofcolorizer).50
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Supplementary Figure 31 | Screenshot of the web app.
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