Supporting information

Controlled mutation in the replication of synthetic oligomers.

Diego Núñez-Villanueva, Christopher A. Hunter*

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. E-mail: herchelsmith.orgchem@ch.cam.ac.uk
TABLE OF CONTENTS Page
General experimental details. S2
Synthesis of building blocks. S3
Reference 3-mer oligomers S12
Synthesis of APA 3-mer (10). S15
Synthesis of PAA 3-mer (11). S25
Synthesis of PPP 3-mer (15). S32
Covalent template-directed mutation of chemical information encoded in template 1. S36
References S73

General experimental details.

All the reagents and materials used in the synthesis of the compounds described below were bought from commercial sources, without prior purification. Dry THF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were obtained from a solvent purification system (Pure Solv ${ }^{\text {TM, }}$, Innovative Technology, Inc.). Anhydrous DMF was purchased from Sigma-Aldrich. Thin layer chromatography was carried out using with silica gel 607 (Merck) on glass plates. Flash chromatography was carried out on an automated system (Combiflash Rf+ or Combiflash Rf Lumen) using prepacked cartridges of silica (25μ PuriFlash ${ }^{\circledR}$ columns). All NMR spectroscopy was carried out on a Bruker 400 MHz DPX400, 400 MHz AVIII400, 500 MHz DCH cryoprobe or 500 MHz TCI Cryoprobe spectrometer using the residual solvent as the internal standard. All chemical shifts (δ) are quoted in ppm and coupling constants given in Hz . Splitting patterns are given as follows: s (singlet), bs (broad singlet), d (doublet), t (triplet), q (quadruplet), m (multiplet). FT-IR spectra were measured on a Bruker Alpha spectrometer equipped with an ATR cell. Melting points were measured in a Mettler Toledo MP50 Melting Point System. UPLC analysis of samples was performed using Waters Acquity H-class UPLC coupled with a single quadrupole Waters SQD2. Acquity UPLC CSH C18 column, $130 \AA \AA, 1.7 \mu \mathrm{~m}, 2.1 \mathrm{~mm} \times 50 \mathrm{~mm}$ or Acquity UPLC BEH C8 column, $130 \AA$, $1.7 \mu \mathrm{~m}, 2.1$ $\mathrm{mm} \times 50 \mathrm{~mm}$ were used as UPLC columns. The conditions of the UPLC method are as follows: gradients of water $+0.1 \%$ formic acid (solvent A) and acetonitrile $+0.1 \%$ formic acid (solvent B) as specified in each case. Flow rate: $0.6 \mathrm{ml} / \mathrm{min}$; Column temperature of $40^{\circ} \mathrm{C}$; Injection volume of $2 \mu \mathrm{~L}$. The signal was monitored at 254 nm . HRMS analysis was performed in a Waters LCT Premier equipped with a TOF mass analyser and W optics for enhanced resolution, using 50\% aqueous acetonitrile with 0.25% formic acid as mobile phase.

Synthesis of building blocks.

Synthesis of 1-mer 4.

Compound $\mathbf{2}^{\text {s1 }}$ ($0.108 \mathrm{~g}, 0.34 \mathrm{mmol}$), 4, 4^{\prime}-dihydroxybiphenyl ($0.314 \mathrm{~g}, 1.68 \mathrm{mmol}$), EDC (0.097 $\mathrm{g}, 0.51 \mathrm{mmol})$ and DMAP ($0.006 \mathrm{~g}, 0.05 \mathrm{mmol}$) were mixed in a round-bottom flask and dissolved in a mixture of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and dry DMF (0.5 mL). The reaction was stirred at room temperature for 2 h . The reaction was quenched with 0.1 M HCl soln. and diluted with EtOAc. The organic layer was separated and washed with 0.1 M HCl soln. (2 x), $\mathrm{H}_{2} \mathrm{O}(1 x)$ and brine (1x). The solution was dried with anhydrous MgSO_{4}, filtered and the solvents evaporated. The obtained residue was purified by flash chromatography (from 0\% to 40\% of EtOAc in Pet. Ether followed by a second column using a gradient from 0% to 4% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 1-mer 4 ($0.078 \mathrm{~g}, 47 \%$) as a foam, along with the corresponding disubstituted derivative (0.014 g, 11\%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta_{\mathrm{H}}=8.05(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, 3-\mathrm{H}), 7.56(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, 3-\mathrm{H}, \mathrm{biph})$, $7.46\left(\mathrm{~m}, 4 \mathrm{H}, 2-\mathrm{H}\right.$ and $8-\mathrm{H}$, biph), $7.22(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 2-\mathrm{H}$, biph $), 7.15\left(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right)$, 6.94 (d, 2H, J = $8.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}$), 6.90 (d, 2H, J = $\left.8.5 \mathrm{~Hz}, 9-\mathrm{H}, \mathrm{biph}\right), 4.87$ (s, 1H, OH), 4.69 (d, 2H, J = $2.5 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2}$), 2.29 (t, 1H, J = $2.5 \mathrm{~Hz}, \mathrm{CH}$, alkyne).
${ }^{13}$ C NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{c}}=169.4$ (CO, amide), 164.7 (CO, ester), 155.7 (10-C, biph), 149.7 (1-C, biph), 140.0 (1-C), 139.8 ($4^{\prime}-C$), 139.0 (4-C, biph), 138.7 ($1^{\prime}-C$), 132.8 ($7-C$, biph), 130.8 (4-C), 130.0 (3-C), 129.4 (2'-C), 128.9 (2-C), 128.4 (8-C, biph), 127.9 (3-C, biph), 121.9 (2C, biph), 120.1 (3'-C), 115.9 (9-C, biph), 78.5 (C, alkyne), 73.1 (CH, alkyne), 39.9 ($\mathrm{N}-\mathrm{CH}_{2}$).

HRMS (ES+): calcd for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{4} 489.1563[\mathrm{M}+\mathrm{H}]^{+}$, found $489.1562[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (ATR): 3288, 2921, 2851, 2125, 2114, 1734, 1645, 1505, 1497, 1296 and $1203 v_{\max } / \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ compound 4.

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ compound 4.
 が
$\begin{array}{ll} & -78.49 \\ \mathrm{CHCl}_{3} & -73.11\end{array}$ ع6. $6 \varepsilon-$

Synthesis of compound 6

HO2COTBDMS

4'-hydroxy-4-biphenylcarboxylic acid ($0.500 \mathrm{~g}, 2.34 \mathrm{mmol}$) was dissolved in DMF (10 mL) and treated with imidazole ($1.41 \mathrm{~g}, 9.34 \mathrm{mmol}$) and TBDMS-Cl ($0.795 \mathrm{~g}, 11.68 \mathrm{mmol}$). The reaction was stirred at room temperature for 16 h . The reaction was diluted with $\mathrm{H}_{2} \mathrm{O} / E t \mathrm{OAc}$, washed with 5% aq. soln. $\mathrm{LiCl}(3 x), \mathrm{H}_{2} \mathrm{O}(1 x)$ and brine. The organic layer was dried over MgSO_{4} and evaporated to dryness. The crude material (0.784 g , quant.) was used without further purification. The analytical and spectroscopic data match those previously reported in the literature. ${ }^{52,53}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=8.15(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, 2-\mathrm{H}), 7.66(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, 3-\mathrm{H}), 7.53$ (d, $2 \mathrm{H}, J=8.0 \mathrm{~Hz}, 8-\mathrm{H}$), $6.94\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, 9-\mathrm{H}\right.$), $1.01\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}, \mathrm{TBDMS}\right), 0.24\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$, TBDMS).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}): $\delta_{\mathrm{C}}=171.3$ (CO), 156.2 (10-C), 146.2 (4-C), 132.8 (7-C), 130.7 (2-C), 128.4 (8-C), 127.3 (1-C), 126.6 (3-C), 120.6 (9-C), 25.7 ($\left.\mathrm{CH}_{3},{ }^{t} \mathrm{Bu}, \mathrm{TBDMS}\right), 18.3$ (C, $\left.{ }^{\mathrm{t}} \mathrm{Bu}, \mathrm{TBDMS}\right),-$ $4.4\left(\mathrm{CH}_{3}, \mathrm{TBDMS}\right)$.

FT-IR (ATR): 3295, 2920, 2850, 2104, 2094, 1733, 1603, 1505, 1268, 1185 and $1068 v_{\max } / \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ compound 6.

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ compound 6.

Synthesis of mutant 1-mer 7.

Compound $5^{\mathrm{s} 1}(0.100 \mathrm{~g}, 0.34 \mathrm{mmol})$, compound $6(0.112 \mathrm{~g}, 0.34 \mathrm{mmol})$, EDC ($0.098 \mathrm{~g}, 0.51$ mmol) and DMAP ($0.021 \mathrm{~g}, 0.17 \mathrm{mmol}$) were mixed in a round-bottom flask and dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL). The reaction was stirred at room temperature for 1 h and then TBAF (1 M in THF, $0.69 \mathrm{~mL}, 0.69 \mathrm{mmol}$) was added dropwise. After 30 minutes of stirring, the reaction was quenched with 0.1 M HCl soln. and diluted with EtOAc. The organic layer was separated and washed with 0.1 M HCl soln. (2 x$), \mathrm{H}_{2} \mathrm{O}(1 x)$ and brine (1x). The solution was dried with anhydrous MgSO_{4}, filtered and the solvents evaporated. The obtained residue was purified by flash chromatography (from 0% to 40% of EtOAc in Pet. Ether) to afford compound $7(0.119 \mathrm{~g}$, 72%) as a foam.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=8.17(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 2-\mathrm{H}, \mathrm{biph}), 7.66(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 3-\mathrm{H}$, biph), $7.54(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 8-\mathrm{H}$, biph $), 7.44(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 2-\mathrm{H}), 7.16\left(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 2^{\prime}-\right.$ $\mathrm{H}), 7.10(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 3-\mathrm{H}), 6.96\left(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 6.93(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 9-\mathrm{H}, \mathrm{biph})$, $5.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.67\left(\mathrm{~d}, 2 \mathrm{H}, J=2.5 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2}\right), 2.28(\mathrm{t}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}, \mathrm{CH}$, alkyne).
${ }^{13}$ C NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=169.4$ (CO, amide), 164.7 (CO, ester), 156.4 (10-C, biph), 152.4 (4-C), 146.3 (4-C, biph), 139.5 and 139.4 ($1^{\prime} \mathrm{C}$ and $4^{\prime}-\mathrm{C}$), 132.4 and 132.4 (1-C and 1-C, biph), 130.9 (2-C, biph), 130.6 (2-C), 129.3 ($2^{\prime}-\mathrm{C}$), 128.8 ($8-\mathrm{C}, \mathrm{biph}$), 127.3 (7-C), 126.8 (3-C, biph), 121.5 (3-C), 120.1 ($3^{\prime}-\mathrm{C}$), 116.1 ($9-\mathrm{C}$, biph), 78.9 (C, alkyne), 72.8 (CH, alkyne), 40.2 (N CH_{2}).

HRMS (ES+): calcd for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{4} 489.1563[\mathrm{M}+\mathrm{H}]^{+}$, found $489.1553[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (ATR): 3295, 2920, 2850, 2104, 2094, 1733, 1603, 1505, 1268, 1185 and $1068 v_{\max } / \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) compound 7.

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ compound 7.

Reference 3-mer oligomers

Scheme S1 shows the chemical structure of template 1 and all the possible sequences of phenol and benzoic acid information units in a 3-mer oligomer (8-15). The template (1) bears a p-trifluoromethylbenzyl terminal group in contrast to the p-tert-butylbenzyl groups of oligomers 8-15 to provide a spectroscopic handle to distinguish the template $\mathbf{1}$ and its identical copy 8. Sequences are written from the tert-butylbenzyl or p-trifluoromethylbenzyl terminus using a 2-letter code: A for benzoic acid and P for phenol.

(12)

PAP
(13)

(14)

(15)

Scheme S1. Molecular structure of template and all the possible product sequences from the covalent template-directed synthesis using template $\mathbf{1}$ and 1-mers $\mathbf{4}$ and $\mathbf{7}$.

Synthesis and characterization of reference 3-mer oligomers.

Template (1).
This compound has been previously described. ${ }^{\text {s4 }}$

AAA (8).
This compound has been previously described. ${ }^{54}$

AAP (9).
This compound has been previously described. ${ }^{\text {S1 }}$

APA (10).
Synthesis and characterization of this compound is provided in the next section.

PAA (11).
Synthesis and characterization of this compound is provided in the next section.

APP (12).
This compound has been previously described. ${ }^{\text {S1 }}$

PAP (13).
This compound has been previously described. ${ }^{\text {S1 }}$

PPA (14).
This compound has been previously described. ${ }^{\text {S1 }}$

PPP (15).
Synthesis and characterization of this compound is provided in the next section.

UPLC traces for reference 3-mer oligomers

Fig. S1 shows the individual UPLC traces for template 1 and the sequences 8-15. The bottom two chromatograms correspond to two mixtures prepared as reference for the covalent template-directed mutation experiments.

Fig S1. UPLC traces for template 1 and the sequences 8-15. The bottom two chromatograms correspond to two mixtures prepared as reference for the covalent template-directed mutation experiments. Conditions: C 18 column at $40^{\circ} \mathrm{C}(254 \mathrm{~nm})$ using water $+0.1 \%$ formic acid (A) and $\mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ formic acid (B) with flow rate of $0.6 \mathrm{ml} / \mathrm{min}$; Gradient of $0-4$ minutes from 45% to $50 \% \mathrm{~B}+1$ minute $100 \% \mathrm{~B}$.

Synthesis of APA 3-mer (10).

Scheme S2 shows the synthetic route towards APA 3-mer oligomer 10. Copper-catalysed azide alkyne cycloaddition (CuAAC) reaction between compound $\mathbf{S 1}^{\mathbf{S 5}}$ and $\mathbf{S 2}^{\text {S1 }}$ followed by TBAF-mediate removal of silyl protecting groups afforded 2-mer $\mathbf{S 3}$ in moderate yield. Subsequent CuAAC reaction of $\mathbf{S 3}$ with protected 1-mer $\mathbf{S 4}{ }^{\text {S1 }}$ followed by alkyne deprotection using TBAF provided 3-mer $\mathbf{S 5}$ in good yield. Final step toward 3-mer $\mathbf{1 0}$ involved capping of S5 with tert-butyl benzyl azide followed by basic hydrolysis of methyl ester groups to afford 3-mer 10 in good yield.

Scheme S2. Synthesis of APA 3-mer oligomer (10).

Synthesis of compound S3.

Compound S1 ${ }^{55}$ ($0.018 \mathrm{~g}, 0.04 \mathrm{mmol}$), compound $\mathbf{S 2}^{\mathrm{S1}}(0.018 \mathrm{~g}, 0.04 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}(1.4$ $\mathrm{mg}, 0.004 \mathrm{mmol}$) and TBTA ($2.1 \mathrm{mg}, 0.004 \mathrm{mmol}$) were mixed in a round-bottom flask and, under N_{2}, THF (5 mL) was added. The reaction was stirred overnight at room temperature. Once the reaction was completed, TBAF (1 M in THF, $0.08 \mathrm{~mL}, 0.08 \mathrm{mmol}$) was added dropwise. The solution was stirred for 10 min at room temperature, quenched with 0.1 M HCl and extracted with EtOAc (3x) followed by washing with $\mathrm{H}_{2} \mathrm{O}$ (1x) and brine (1x). The organic layer was dried over anhydrous MgSO_{4} and concentrate under vacuum. The crude was purified by flash column chromatography on silica gel (gradient from 10% to 70% of EtOAc in Pet. Ether) to afford compound S3 ($0.014 \mathrm{~g}, 47 \%$) as a foam.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=8.17\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\text {triaz, }}\right.$, internal), 7.98 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{\text {triaz }}, \mathrm{PhO}$ cap), 7.84 (d, $2 \mathrm{H}, J=8.0 \mathrm{~Hz}, 3-\mathrm{H}$, ester), $7.65\left(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right.$, internal), $7.58\left(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right.$, PhO cap), 7.37 (bs, 1H, OH), 7.36 (d, 2H, J = $8.0 \mathrm{~Hz}, 2-\mathrm{H}$, ester), 7.29-7.24 (m, 6H, 2'-H and 3"$\mathrm{H}), 7.22\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, 2-\mathrm{H}\right.$, phenol), $6.99\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}\right), 6.98$ (t partially overlapped, $\left.1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 4^{\prime \prime}-\mathrm{H}\right), 6.61\left(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 3-\mathrm{H}\right.$, phenol), $5.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}\right), 5.22$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}$, ester), 4.69 (d, $2 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2}$, phenol), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{3}\right), 2.25(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ 2.5 Hz , alkyne).
${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0 . 6} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=170.1$ (CO, amide phenol), 169.7 (CO, amide ester), 166.2 (CO, ester), 158.7 (4-C, phenol), 158.2 ($\left.1^{\prime \prime}-C\right)$, 145.5 ($C_{\text {triaz, }}$ PhO cap), 144.3 ($C_{\text {triaz, }}$ internal), 143.9 (1'-C, internal), 143.6 (1'-C, PhO cap), 139.1 (1-C, ester), 135.5 (4'-C, PhO cap), 135.2 (4'C, internal), 131.8 (4-C, ester), 131.4 (2-C, phenol), 129.8, 129.5, 129.0, 128.9 and 128.8 (2-C and 3-C, ester; $2^{\prime}-\mathrm{C} ; 3^{\prime \prime}-\mathrm{C}$), 126.1 (1-C, phenol), $122.3\left(\mathrm{CH}_{\text {triaz, }}\right.$ internal), 121.6 ($\left.4^{\prime \prime}-\mathrm{C}\right), 121.5$ ($3^{\prime}-$ C, PhO cap), 121.3 (3'-C, internal), 120.9 ($\mathrm{CH}_{\text {triaz, }}$ PhO cap), 115.1 (3-C, phenol), 114.9 (2' $\left.{ }^{\prime \prime}-\mathrm{C}\right)$, 78.9 (C, alkyne), 72.9 (CH, alkyne), $61.9\left(\mathrm{O}-\mathrm{CH}_{2}\right), 52.5\left(\mathrm{O}-\mathrm{CH}_{3}\right), 46.2\left(\mathrm{~N}-\mathrm{CH}_{2}\right.$, ester), $40.0\left(\mathrm{~N}-\mathrm{CH}_{2}\right.$, phenol).

HRMS (ES+): calcd for $\mathrm{C}_{43} \mathrm{H}_{35} \mathrm{~N}_{8} \mathrm{O}_{6} 759.2680[\mathrm{M}+\mathrm{H}]^{+}$, found $759.2668[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (ATR): $v_{\max } 3294,2919,1719,1644,1518,1279,1237,826$ and $757 \mathrm{~cm}^{-1}$.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ compound $\mathbf{S 3}$.

$\stackrel{\text { N }}{N}$

${ }^{13} \mathrm{C}$-NMR ($\mathbf{1 0 0 . 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) compound $\mathbf{S 3}$.

Synthesis of compound S5.

Compound S3 ($0.014 \mathrm{~g}, 0.02 \mathrm{mmol})$, compound $\mathrm{S}^{\mathrm{S} 1}(0.008 \mathrm{~g}, 0.02 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}(0.7$ $\mathrm{mg}, 0.002 \mathrm{mmol}$) and TBTA ($1.0 \mathrm{mg}, 0.002 \mathrm{mmol}$) were mixed in a round-bottom flask and, under N_{2}, THF (2 mL) was added. The reaction was stirred overnight at room temperature. Once the reaction was completed, TBAF (1 M in THF, $0.02 \mathrm{~mL}, 0.02 \mathrm{mmol}$) was added dropwise. The solution was stirred for 10 min at room temperature, quenched with 0.1 M HCl and extracted with EtOAc (3x) followed by washing with $\mathrm{H}_{2} \mathrm{O}(1 x)$ and brine (1x). The organic layer was dried over anhydrous MgSO_{4} and concentrate under vacuum. The crude was purified by flash column chromatography on silica gel (gradient from 10% to 85% of EtOAc in Pet. Ether) to afford compound S5 ($0.014 \mathrm{~g}, 67 \%$) as a foam.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=8.18$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{\text {triaz, }}$, internal), 8.13 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{\text {triaz, }}$, internal), 7.98 (s, 1H, CH triaz, PhO cap), 7.87 (d, $2 \mathrm{H}, J=8.0 \mathrm{~Hz}, 3-\mathrm{H}$, ester), 7.84 (d, $2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, 3-\mathrm{H}$, ester), $7.64\left(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 7.59\left(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 7.58\left(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 7.41$ (d, $2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, 2-\mathrm{H}$, ester), $7.36(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, 2-\mathrm{H}$, ester $), 7.32-7.26\left(\mathrm{~m}, 8 \mathrm{H}, 2^{\prime}-\mathrm{H}\right.$ and $\left.3^{\prime \prime}-\mathrm{H}\right)$, $7.15\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, 2-\mathrm{H}\right.$, phenol), $6.98\left(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}\right), 6.97$ (t partially overlapped, $1 \mathrm{H}, 4^{\prime \prime}-\mathrm{H}$), 6.58 (d, $2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, 3-\mathrm{H}$, phenol), $5.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}\right), 5.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 5.17(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}$), 4.71 (d, 2H, J = 2.5 Hz, N-CH2, alkyne), $3.85\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{3}\right), 2.30(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}$, alkyne).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}): $\delta_{\mathrm{C}}=170.3$ (CO, amide phenol), 169.9 and 169.4 (CO, amide ester), 166.3 and 166.2 (CO, ester), 158.8 (4-C, phenol), 158.2 ($\left.1^{\prime \prime}-\mathrm{C}\right), 145.5$ (Ctriaz, PhO cap), 145.0 ($1^{\prime}-\mathrm{C}, \mathrm{PhO}$ cap), 144.8 and 144.2 ($\mathrm{C}_{\text {triaz }}$), 143.6 and 142.5 ($1^{\prime}-\mathrm{C}$, internal), 139.2 and 139.1 (1-C, ester), 135.8 and 135.5 ($4^{\prime}-C$, internal), 131.8 (4-C, ester), 131.4 (2-C, phenol), 129.8, $129.5,129.2,128.9,128.8$ and 128.7 ($2-C$ and $3-C$, ester; $2^{\prime}-C ; 3^{\prime \prime}-C$), 126.2 (1-C, phenol), 122.2 $\left(\mathrm{CH}_{\text {triaz }}\right.$, internal), $121.6\left(4^{\prime \prime}-\mathrm{C}\right), 121.5,121.3$ and $121.2\left(3^{\prime}-\mathrm{C}\right), 120.9\left(\mathrm{CH}_{\text {triaz }}, \mathrm{PhO}\right.$ cap), 115.2 (3C, phenol), 114.9 (2'-C), 78.4 (C, alkyne), $73.3\left(\mathrm{CH}\right.$, alkyne), $61.9\left(\mathrm{O}-\mathrm{CH}_{2}\right)$, $52.5\left(\mathrm{O}-\mathrm{CH}_{3}\right), 46.5$ and $46.1\left(\mathrm{~N}-\mathrm{CH}_{2}\right), 39.8\left(\mathrm{~N}-\mathrm{CH}_{2}\right.$, alkyne).

HRMS (ES+): calcd for $\mathrm{C}_{61} \mathrm{H}_{49} \mathrm{~N}_{12} \mathrm{O}_{9} 1093.3745[\mathrm{M}+\mathrm{H}]^{+}$, found $1093.3730[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR (ATR): $v_{\max } 3139,2951,2922,1719,1643,1517,1277,1238,845$ and $751 \mathrm{~cm}^{-1}$.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ compound S5.

${ }^{13} \mathrm{C}$-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound S5.

Synthesis of APA 3-mer (10).

Compound $\mathbf{S 5}$ ($0.011 \mathrm{~g}, 0.01 \mathrm{mmol}$), 1-(azidomethyl)-4-tert-butylbenzene ($3 \mathrm{mg}, 0.02 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right){ }_{4} \mathrm{PF}_{6}(0.3 \mathrm{mg}, 0.001 \mathrm{mmol})$ and TBTA $(0.5 \mathrm{mg}, 0.001 \mathrm{mmol})$ were mixed in a roundbottom flask and, under N_{2}, THF (3 mL) was added. The reaction was stirred overnight at room temperature. Then, $\mathrm{H}_{2} \mathrm{O}$ was added (1.5 mL) followed by $\mathrm{LiOH}(2.5 \mathrm{mg}, 0.06 \mathrm{mmol})$ and the reaction was stirred at room temperature for 2 h . Then, the crude was diluted with $\mathrm{H}_{2} \mathrm{O}$ and acidified with 1 M HCl soln. to $\mathrm{pH} 2-3$. The aqueous phase was extracted with EtOAc (3 x) and the combined organic phase was washed with EDTA soln. ($2 x$), $\mathrm{H}_{2} \mathrm{O}(1 x)$ and brine (1x), dried over MgSO_{4} and evaporated to dryness. The residue was purified by flash chromatography on silica gel (gradient from 0% to 20% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 3 -mer $\mathbf{1 0}(0.007 \mathrm{~g}, 58 \%$) as a white powder.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- \boldsymbol{d}_{6}): $\delta_{\mathrm{H}}=8.87\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\text {triaz }}, \mathrm{PhO}\right.$ cap), $8.73\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\text {triaz }}\right), 8.70(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{\text {triaz }}$), $8.10\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\text {triaz }}{ }^{t} \mathrm{Bu}\right.$ cap), $7.77\left(\mathrm{~m}, 10 \mathrm{H}, 3-\mathrm{H}\right.$, acid; $\left.3^{\prime}-\mathrm{H}\right), 7.44(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, 2-$ H, acid), $7.40\left(\mathrm{~m}, 6 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.33$ (d, $2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, 2-\mathrm{H}$, acid), $7.28\left(\mathrm{~m}, 4 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}, \mathrm{PhO}\right.$ cap; $3^{\prime \prime}-\mathrm{H}$, ${ }^{t}$ Bu cap), 7.21 (d, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 2-\mathrm{H}$, phenol), $7.07\left(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H},{ }^{t} \mathrm{Bu}\right.$ cap), 7.03 (d, 2 H , $\left.J=8.0 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}, \mathrm{PhO} \mathrm{cap}\right), 6.94\left(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 4^{\prime \prime}-\mathrm{H}, \mathrm{PhO}\right.$ cap), $6.59(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 3-\mathrm{H}$, phenol), 5.49 (s, 2H, N-CH2, ${ }^{t} \mathrm{Bu}$ cap), 5.20 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}$), 5.16 (bs, $6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}$), 1.17 ($\mathrm{s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}$).
${ }^{13}$ C NMR (125 MHz , DMSO- \boldsymbol{d}_{6}): $\delta_{\mathrm{C}}=169.3$ (CO, amide phenol), 168.9 (CO, amide acid), 167.7 (CO, acid), 159.1 (4-C, phenol), 158.0 ($1^{\prime \prime}-\mathrm{C}, \mathrm{PhO}$ cap), 150.5 ($4^{\prime \prime}-\mathrm{C}^{t}{ }^{t} \mathrm{Bu}$ cap), 144.7, 144.3 and $144.0\left(C_{\text {triaz }}\right), 143.7$ ($\left.1^{\prime}-C\right)$, $143.0\left(C_{\text {triaz }}\right), 142.8$ and 142.4 ($\left.1^{\prime}-C\right), 138.4$ and 138.4 (1-C, acid), 134.6, 134.6 and 134.2 (4-C, acid; $\left.4^{\prime}-\mathrm{C}\right), 133.2$ ($1^{\prime \prime}-$ C, $^{t}{ }^{+B u}$ cap), 131.0 (2-C, phenol), 129.6, 129.2, 129.2, 128.9, 128.8, 128.8, 128.2 and 127.4 (Carom), 125.6 (1-C, phenol), 125.4 ($3^{\prime \prime}-\mathrm{C}^{t}{ }^{t} \mathrm{Bu}$ cap), $124.2\left(\mathrm{CH}_{\text {triaz }},{ }^{\text {B Bu cap }}\right), 122.9\left(\mathrm{CH}_{\text {triaz }}, \mathrm{PhO}\right.$ cap $), 121.5$ and $121.5\left(\mathrm{CH}_{\text {triaz }}\right), 121.8\left(4^{\prime \prime}-\mathrm{C}, \mathrm{PhO}\right.$ cap $)$, 120.6, 120.5 and 120.3 ($\left.3^{\prime}-\mathrm{C}\right), 114.7$ ($2^{\prime \prime}-\mathrm{C}, \mathrm{PhO}$ cap), 114.5 (3-C, phenol), $60.9\left(\mathrm{O}-\mathrm{CH}_{2}\right), 52.4$ ($\mathrm{N}-$ $\mathrm{CH}_{2},{ }^{t} \mathrm{Bu}$ cap), 45.4, 45.4 and $44.9\left(\mathrm{~N}-\mathrm{CH}_{2}\right), 34.2\left(\mathrm{C},{ }^{t} \mathrm{Bu}\right), 31.0\left(\mathrm{CH}_{3},{ }^{t} \mathrm{Bu}\right)$.

HRMS (ES+): calcd for $\mathrm{C}_{70} \mathrm{H}_{60} \mathrm{~N}_{15} \mathrm{O}_{9} 1254.4698[\mathrm{M}+\mathrm{H}]^{+}$, found $1254.4672[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (ATR): $v_{\max } 3369,2958,2923,2850,1641,1599,1517,1385,1234,1045$ and $845 \mathrm{~cm}^{-1}$.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{5 0 0} \mathrm{MHz}\right.$, DMSO-d d_{6}) compound 10.

${ }^{13}$ C-NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, DMSO- d_{6}) compound 10.

Synthesis of PAA 3-mer (11).

Scheme S3 shows the synthetic route towards PAA 3-mer oligomer 11. CuAAC reaction between compound $\mathbf{S} \mathbf{S}^{55}$ and $\mathbf{S} \mathbf{2}^{\mathbf{S 1}}$ followed by TBAF-mediate removal of silyl protecting groups afforded 3-mer $\mathbf{S 7}$ in excellent yield. Capping of $\mathbf{S 7}$ with tert-butyl benzyl azide followed by basic hydrolysis of methyl ester groups gave access to 3-mer 11 in good yield.

Scheme S3. Synthesis of PAA 3-mer oligomer (11).

Synthesis of compound S7.

Compound S6 ${ }^{55}(0.020 \mathrm{~g}, 0.03 \mathrm{mmol})$, compound $\mathbf{S 2}^{51}(0.012 \mathrm{~g}, 0.03 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}(0.9$ $\mathrm{mg}, 0.003 \mathrm{mmol}$) and TBTA ($1.3 \mathrm{mg}, 0.003 \mathrm{mmol}$) were mixed in a round-bottom flask and, under N_{2}, THF (5 mL) was added. The reaction was stirred overnight at room temperature. Once the reaction was completed, TBAF (1 M in THF, $0.05 \mathrm{~mL}, 0.05 \mathrm{mmol}$) was added dropwise. The solution was stirred for 10 min at room temperature, quenched with 0.1 M HCl soln. and extracted with EtOAc (3x) followed by washing with $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic layer was dried over anhydrous MgSO_{4} and concentrate under vacuum. The crude was purified by flash column chromatography on silica gel (gradient from 10\% to 90\% of EtOAc in Pet. Ether) to afford compound S7 ($0.025 \mathrm{~g}, 90 \%$) as a foam.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=8.13$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{\text {triaz, }}$, internal), 7.98 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{\text {triazz }}, \mathrm{PhO}$ cap), 7.84 (m, 5H, 3-H, ester; OH), 7.64 (d, 2H, J = $8.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}$), $7.59\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 7.36(\mathrm{~m}, 4 \mathrm{H}$, $2-\mathrm{H}$, ester), 7.32-7.24 (m, 8H, $2^{\prime}-\mathrm{H}$ and $\left.3^{\prime \prime}-\mathrm{H}\right), 7.20(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, 2-\mathrm{H}$, phenol), $6.98(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}$ $=7.5 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}$), 6.97 (t partially overlapped, $1 \mathrm{H}, 4^{\prime \prime}-\mathrm{H}$), $6.60(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, 3-\mathrm{H}$, phenol), 5.26 (s, 2H, O-CH $)_{2}$) 5.24 (s, 2H, N-CH2), $5.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 4.68\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2}\right.$, alkyne), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{3}\right), 2.30(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}$, alkyne).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}): $\delta_{\mathrm{C}}=170.1$ (CO, amide phenol), 169.7 and 169.7 (CO, amide ester), 166.2 and 166.2 (CO, ester), 158.8 (4-C, phenol), 158.2 ($\left.1^{\prime \prime}-\mathrm{C}\right), 145.5$ ($\mathrm{C}_{\text {triaz, }}$ PhO cap), 144.3 and 144.2 ($\mathrm{C}_{\text {triaz }}$), 143.9, 143.6 and 143.3 ($\left.1^{\prime}-\mathrm{C}\right), 139.2$ and 139.1 (1-C, ester), 135.5, 135.4 and $135.1\left(4^{\prime}-C,\right), 131.8$ and 131.4 (4-C, ester), 129.8, 129.5, 129.0, 128.8 and 126.0 ($2-\mathrm{C}$ and $3-$ C, ester; $\left.2^{\prime}-\mathrm{C} ; 3^{\prime \prime}-\mathrm{C}\right), 122.1$ and $122.1\left(\mathrm{CH}_{\text {triaz, }}\right.$ internal), 121.6, 121.4, 121.3 and 121.2 ($3^{\prime}-\mathrm{C}$ and $\left.4^{\prime \prime}-\mathrm{C}\right) 120.9$ ($\mathrm{CH}_{\text {triaz, }}$ PhO cap), 115.1 (3-C, phenol), 114.9 (2"-C), 78.9 (C, alkyne), 72.8 (CH, alkyne), $61.9\left(\mathrm{O}-\mathrm{CH}_{2}\right), 52.5\left(\mathrm{O}-\mathrm{CH}_{3}\right), 46.2$ and $46.0\left(\mathrm{~N}-\mathrm{CH}_{2}\right), 40.0\left(\mathrm{~N}-\mathrm{CH}_{2}\right.$, alkyne).

HRMS (ES+): calcd for $\mathrm{C}_{61} \mathrm{H}_{49} \mathrm{~N}_{12} \mathrm{O}_{9} 1093.3745[\mathrm{M}+\mathrm{H}]^{+}$, found $1093.3733[\mathrm{M}+\mathrm{H}]^{+}$.

FT-IR (ATR): $v_{\max } 3153,2237,1720,1643,1606,1518,1279,1239,845$ and $752 \mathrm{~cm}^{-1}$.

${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound $\mathrm{S7}$.

${ }^{13} \mathrm{C}$-NMR ($\mathbf{1 0 0 . 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) compound S 7 .

Synthesis of PAA 3-mer (11).

Compound $\mathbf{S 7}$ ($0.020 \mathrm{~g}, 0.02 \mathrm{mmol}$), 1-(azidomethyl)-4-tert-butylbenzene ($0.005 \mathrm{~g}, 0.03 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right){ }_{4} \mathrm{PF}_{6}(0.6 \mathrm{mg}, 0.002 \mathrm{mmol})$ and TBTA $(1.0 \mathrm{mg}, 0.002 \mathrm{mmol})$ were mixed in a roundbottom flask and, under N_{2}, THF (3 mL) was added. The reaction was stirred overnight at room temperature. Then, $\mathrm{H}_{2} \mathrm{O}$ was added (1.5 mL) followed by $\mathrm{LiOH}(4.5 \mathrm{mg}, 0.08 \mathrm{mmol})$ and the reaction was stirred at room temperature for 2 h . Then, the crude was diluted with $\mathrm{H}_{2} \mathrm{O}$ and acidified with 1 M HCl soln. to pH 2-3. The aqueous phase was extracted with EtOAc (3x) and the combined organic phase was washed with EDTA soln. ($2 x$), $\mathrm{H}_{2} \mathrm{O}(1 x)$ and brine (1 x), dried over MgSO_{4} and evaporated to dryness. The residue was purified by flash chromatography on silica gel (gradient from 0% to 20% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford compound 11 ($0.016 \mathrm{~g}, 70 \%$) as a white powder.
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- \boldsymbol{d}_{6}): $\delta_{H}=8.85$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{\text {triazz }}$, PhO cap), 8.75 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{\text {triaz, }}$ acid), 8.70 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{\text {triaz, }}$, phenol), 8.05 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{\text {triazz }}{ }^{t}$ Bu cap), 7.76 (m, 10H, 3-H, acid; 3'-H), 7.42 (m, 8H, 2H, acid; $2^{\prime}-\mathrm{H}$), 7.28 (m, 6H, 2-H, acid; $3^{\prime \prime}-\mathrm{H}, \mathrm{PhO}$ cap; $3^{\prime \prime}-\mathrm{H},{ }^{t} \mathrm{Bu}$ cap), 7.17 (d, $2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, 2-\mathrm{H}$, phenol), 7.08 (d, $2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H},{ }^{t} \mathrm{Bu}$ cap), 7.03 (d, $2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}, \mathrm{PhO}$ cap), 6.94 (t, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 4^{\prime \prime}-\mathrm{H}, \mathrm{PhO}$ cap), 6.60 (d, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 3-\mathrm{H}$, phenol), 5.48 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2},{ }^{t} \mathrm{Bu}$ cap), 5.21 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}$, acid), 5.17 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}, \mathrm{PhO}$ cap; $\mathrm{N}-\mathrm{CH}_{2}$, acid), 5.11 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}$, phenol), 1.17 (s, 9H, ${ }^{t} \mathrm{Bu}$).
${ }^{13}$ C NMR (100.6 MHz, DMSO- \boldsymbol{d}_{6}): $\delta_{C}=169.2$ (CO, amide phenol), 168.8 (CO, amide acid), 165.4 (CO, acid), 159.3 (4-C, phenol), 157.9 ($1^{\prime \prime}-C$, PhO cap), 150.5 (4"-C, ${ }^{t} \mathrm{Bu}$ cap), 144.3, 144.2 and $143.9\left(C_{\text {triaz }}\right)$, 143.6 and $143.5\left(1^{\prime}-C\right), 143.4\left(C_{\text {triaz }}\right), 142.7$ and $142.5\left(1^{\prime}-C\right), 139.5$ and 139.4 (1-C, acid), 134.6, 134.6 and 134.5 ($\left.4^{\prime}-C\right), 134.0$ ($4-C$, acid), 133.2 ($1^{\prime \prime}-C^{t}{ }^{t}$ Bu cap), 130.8 ($2-C$, phenol), 130.3, 129.5, 128.7, 128.1 and 127.3 (Carom), 125.6 (1-C, phenol), 125.4 ($3^{\prime \prime}$-C, ${ }^{\text {Bu cap), } 124.0}$ ($\left.\mathrm{CH}_{\text {triaz, }}{ }^{\text {tBu cap }}\right), 122.8$ ($\mathrm{CH}_{\text {triaz }}, \mathrm{PhO}$ cap), 121.6 and $121.5\left(\mathrm{CH}_{\text {triaz }}\right), 120.9$ (4"-C, PhO cap), 120.6, 120.5 and 120.3 ($3^{\prime}-\mathrm{C}$), 114.7 ($2^{\prime \prime}-\mathrm{C}$, PhO cap), 114.6 (3-C, phenol), $60.9\left(\mathrm{O}-\mathrm{CH}_{2}\right), 52.4\left(\mathrm{~N}-\mathrm{CH}_{2}\right.$, ${ }^{t} \mathrm{Bu}$ cap), $45.2,45.1$ and $45.1\left(\mathrm{~N}-\mathrm{CH}_{2}\right), 34.2\left(\mathrm{C},{ }^{t} \mathrm{Bu}\right), 31.0\left(\mathrm{CH}_{3},{ }^{\mathrm{t}} \mathrm{Bu}\right)$.

HRMS (ES+): calcd for $\mathrm{C}_{70} \mathrm{H}_{60} \mathrm{~N}_{15} \mathrm{O}_{9} 1254.4698[\mathrm{M}+\mathrm{H}]^{+}$, found $1254.4702[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (ATR): $v_{\max } 2959,2924,2853,1708,1599,1516,1278,1233,1023,844,752$ and $735 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}) compound 11.

${ }^{13} \mathrm{C}$-NMR ($\mathbf{1 0 0 . 6} \mathrm{MHz}$, DMSO- d_{6}) compound 11.

Synthesis of PPP 3-mer (15).

Scheme S4 shows the synthetic route towards PPP 3-mer oligomer 15. CuAAC reaction between compound $\mathbf{S 8} \mathbf{8 1}^{51}$ and $\mathbf{S 2}{ }^{\text {S1 }}$ followed by TBAF-mediate removal of silyl protecting groups afforded the corresponding alkyne-terminated 3-mer. Subsequent capping of this 3-mer with tert-butyl benzyl azide gave access to 3-mer 15 in moderate yield.

Scheme S4. Synthesis of PPP 3-mer oligomer (15).

Synthesis of PPP 3-mer (15).

Compound S8 ${ }^{\text {S1 }}$ ($0.008 \mathrm{~g}, 0.01 \mathrm{mmol}$), compound $\mathbf{S 2}^{\mathrm{S} 1}(0.005 \mathrm{~g}, 0.01 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}(0.4$ $\mathrm{mg}, 0.001 \mathrm{mmol}$) and TBTA ($0.6 \mathrm{mg}, 0.001 \mathrm{mmol}$) were mixed in a round-bottom flask and, under N_{2}, THF (2 mL) was added. The reaction was stirred overnight at room temperature. Once the reaction was completed, TBAF (1 M in THF, $0.02 \mathrm{~mL}, 0.02 \mathrm{mmol}$) was added dropwise. The solution was stirred for 10 min at room temperature, quenched with 0.1 M HCl soln. and extracted with EtOAc (3x) followed by washing with $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic layer was dried over anhydrous MgSO_{4} and concentrate under vacuum. The crude was mixed with 1-(azidomethyl)-4-tert-butylbenzene ($0.006 \mathrm{~g}, 0.03 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ ($0.4 \mathrm{mg}, 0.001 \mathrm{mmol}$) and TBTA ($0.6 \mathrm{mg}, 0.001 \mathrm{mmol}$) in a round-bottom flask and, under N_{2}, THF (2 mL) was added. The reaction was stirred overnight at room temperature. The reaction was then diluted with EtOAc and washed with EDTA soln. (2 x), $\mathrm{H}_{2} \mathrm{O}(1 x)$ and brine. The organic layer was dried over MgSO_{4} and concentrate under vacuum. The crude was purified by flash column chromatography on silica gel (gradient from 0% to 10% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford compound 15 ($0.004 \mathrm{~g}, 32 \%$) as a white amorphous powder.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- \boldsymbol{d}_{6}): $\delta_{\mathrm{H}}=9.88(\mathrm{bs}, 3 \mathrm{H}, \mathrm{OH}), 8.88\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\text {triaz }}, \mathrm{PhO}\right.$ cap), $8.70(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{\text {triaz }}$), 8.06 (s, $1 \mathrm{H}, \mathrm{CH}_{\text {triaz, }}{ }^{\text {Bu cap }}$), $7.78\left(\mathrm{~m}, 6 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 7.41\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 7.40(\mathrm{~d}, 2 \mathrm{H}$, $J=8.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}$), 7.29 (m, 6H, 2'-H; $3^{\prime \prime}-\mathrm{H},{ }^{t} \mathrm{Bu}$ cap; $3^{\prime \prime}-\mathrm{H}, \mathrm{PhO}$ cap), 7.19 (m, 6H, 2-H), 7.08 (d, 2H, $J=8.0 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H},{ }^{t} \mathrm{Bu}$ cap), 7.05 (d, $2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}, \mathrm{PhO}$ cap), 6.95 (t, 1H, J = $7.5 \mathrm{~Hz}, 4^{\prime \prime}-\mathrm{H}$, PhO cap), 6.59 (d, $6 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, 3-\mathrm{H}$), 5.48 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2},{ }^{\text {t Bu cap), }} 5.19$ (s, 2H, N-CH2, PhO cap), 5.17 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}$), 5.11 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}$), 1.17 ($\mathrm{s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}$).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, DMSO- \boldsymbol{d}_{6}): $\delta_{\mathrm{C}}=169.3,169.2$ and 169.2 (CO, amide), 159.1, 159.1 and
 PhO cap), 143.9, 143.7 and 143.6 ($\left.1^{\prime}-C\right), 143.4$ ($C_{\text {triaz }}{ }^{\dagger}{ }^{\prime}$ Bu cap), 134.2, 134.2 and 134.1 ($4^{\prime}-C$), 133.2 ($1^{\prime \prime}-C^{\text {t }}{ }^{\text {B Bu cap) }} 131.0$ and 130.9 (2-C), 129.6, 128.9, $128.8,128.7$ and 127.4 ($\mathrm{C}_{\text {arom }}$), 125.7, 125.7 and 125.7 (1-C, phenol), 125.4 ($3^{\prime \prime}-C^{t}{ }^{t} \mathrm{Bu}$ cap), $124.0\left(\mathrm{CH}_{\text {triaz }}{ }^{t}{ }^{\text {Bu cap }), ~} 122.8\left(\mathrm{CH}_{\text {triaz }}, \mathrm{PhO}\right.\right.$ cap), 121.6 and $121.5\left(\mathrm{CH}_{\text {triaz }}\right), 121.0$ ($4^{\prime \prime}-\mathrm{C}, \mathrm{PhO}$ cap), $120.6,120.4$ and 120.3 ($\left.3^{\prime}-\mathrm{C}\right), 114.7$ (2"C, PhO cap), 114.6 and 114.5 (3-C, phenol), $60.9\left(\mathrm{O}-\mathrm{CH}_{2}\right), 52.4\left(\mathrm{~N}-\mathrm{CH}_{2},{ }^{\mathrm{t}} \mathrm{Bu}\right.$ cap), 45.5 and 45.1 $\left(\mathrm{N}-\mathrm{CH}_{2}\right), 34.2\left(\mathrm{C},{ }^{t} \mathrm{Bu}\right), 31.0\left(\mathrm{CH}_{3},{ }^{t} \mathrm{Bu}\right)$.

HRMS (ES+): calcd for $\mathrm{C}_{68} \mathrm{H}_{60} \mathrm{~N}_{15} \mathrm{O}_{7} 1198.4800[\mathrm{M}+\mathrm{H}]^{+}$, found $1198.4795[\mathrm{M}+\mathrm{H}]^{+}$.
FT-IR (ATR): $v_{\max } 3637,2917,2850,1631,1518,1280,1233$ and $843 \mathrm{~cm}^{-1}$.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO-d d_{6}) compound 15.

${ }^{13} \mathrm{C}$-NMR ($\mathbf{1 0 0 . 6} \mathrm{MHz}$, DMSO- d_{6}) compound 15.

Covalent template-directed mutation of chemical information encoded in template 1.

Scheme S5 summarizes the process for the covalent template-directed mutation of chemical information encoded in template 1. This process encompasses four steps:

1) Monomer attachment: Template 1 was loaded with different proportions of 1-mers 4 and 7 via ester coupling using EDC/DMAP as coupling reagents. This step determines the mutation rate of the process, as the obtained preZIP intermediates are enriched in phenol ($\mathrm{X}=\mathrm{O} ; \mathrm{Y}=\mathrm{CO}$) or benzoic acid $(X=C O ; Y=O)$ 1-mers according to the initial ratio of 1-mers 4 and $\mathbf{7}$ used.
2) ZIP: CuAAC intramolecular reaction between the reactive groups of the attached 1-mers leads to the formation of the corresponding duplexes. The reaction is carried out in the presence of an excess of a capping azide (tert-butylbenzyl azide), which reacts with the pendant alkyne group of the duplexes preventing cyclization and intermolecular oligomerization through the reactive chain ends after intramolecular reaction. ${ }^{55,56}$ As the backbone is directional, there are two possible arrangements of the duplexes: parallel and antiparallel in regard to the backbone direction (the duplexes shown in Scheme S5 shows the antiparallel arrangement).
3) Capping: Phenyl propargyl ether was used to cap the pendant azide groups in the obtained duplexes
4) Cleavage: Basic hydrolysis of the ester groups promote the release of the biphenyl traceless linkers. The template 1 is regenerated along with the $3-\mathrm{mer}$ oligomer sequences 8-15. The proportion of this oligomer sequences depends on the mutation rate determined in the attach step.

Step 1: Monomer attachment.

Scheme 56 shows the synthetic approach for the attachment of 1-mers to the template. Five different experiments were performed using a different ratio of 1-mers 4 and 7.

Scheme S6.
> General procedure for monomer attachment.
Template 1, 1-mers 4 and 7, EDC and DMAP were mixed in a round-bottom flask and, under $\mathrm{N}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The reaction was stirred overnight at room temperature. The solution was diluted with EtOAc and washed with 0.1 M HCl soln. $(3 x), \mathrm{H}_{2} \mathrm{O}(1 x)$ and brine. The organic phase was dried with MgSO_{4} and concentrated. The crude material was purified by flash column chromatography on silica gel (gradient from 0\% to 60\% of EtOAc in Pet. Ether and then gradient from 0% to 4% of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the corresponding pre-ZIP intermediates.

Experiment 1.

Reagents and solvent: Template $1(0.014 \mathrm{~g}, 0.011 \mathrm{mmol})$, 1-mer 4 ($0.018 \mathrm{~g}, 0.037 \mathrm{mmol}$), EDC ($0.011 \mathrm{~g}, 0.056 \mathrm{mmol})$, DMAP ($0.007 \mathrm{~g}, 0.056 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$.

PreZIP intermediate: pre-ZIP S9 (0.022 g, 72\%) as a white foam. Fig. S2 shows the UPLC traces of the starting template, reaction crude and pure pre-ZIP S9. Full characterization of preZIP S9 appears in the next page.

Fig S2. UPLC traces of: (a) starting template 1. (b) Reaction crude for the attach step. (c) Pure pre-ZIP S9. (d) MS spectrum of pure pre-ZIP S9 (MW: 2703.8). UPLC Conditions: C 18 column at $40^{\circ} \mathrm{C}$ (254 nm) using water $+0.1 \%$ formic acid (A) and $\mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ formic acid (B) with flow rate of $0.6 \mathrm{ml} / \mathrm{min}$; Gradient of $0-2$ minutes $5 \%-100 \%$ B + 1 minute 100% B.

Full characterization of Pre-ZIP S9.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=8.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\text {triaz }}\right), 8.04(\mathrm{~m}, 12 \mathrm{H}, 3-\mathrm{H}$ and $3-\mathrm{H}, 1-\mathrm{mer}), 8.00(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}_{\text {triaz }}, \mathrm{PhO}$ cap), 7.75 (s, 1H, CH triaz, CF_{3} cap), 7.66 (m, $8 \mathrm{H}, 3^{\prime}-\mathrm{H}$ and $3-\mathrm{H}, \mathrm{CF}_{3}$ cap), 7.58 (m, $12 \mathrm{H}, 3-\mathrm{H}$ and $8-\mathrm{H}$, biph $), 7.45(\mathrm{~m}, 12 \mathrm{H}, 2-\mathrm{H}$ and $2-\mathrm{H}, 1-\mathrm{mer}), 7.38\left(\mathrm{~m}, 8 \mathrm{H}, 2^{\prime}-\mathrm{H}\right.$ and $2-\mathrm{H}, \mathrm{CF}_{3}$ cap), 7.29 (m, 2H, 3-H, PhO cap), 7.23 (m, 12H, 2-H and 9-H, biph), 7.14 (m, 6H, 2'-H, 1-mer), 6.98 (m,3H, 2-H and 4-H, PhO cap), 6.93 (m, 6H, 3'-H, 1-mer), 5.60 (s, 2H, N-CH ${ }_{2}, \mathrm{CF}_{3}$ cap), 5.27 (s, $2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}$), $5.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right.$, internal), 5.23 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}$, internal), 5.17 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}$, internal, next to CF_{3} cap), 4.68 (m, 6H, N-CH2, 1-mer), 2.29 (m, 3H, CH, alkyne).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\mathbf{C D C l}_{3}$): $\delta_{\mathrm{C}}=169.4,169.3$ and 169.3 (CO, amide), 164.5, 164.4 and 164.3 (CO, ester), 158.2 (1-C, PhO cap), 150.4 and 150.3 (1-C and 10-C, biph), 145.5 ($C_{\text {triaz }}$, PhO cap), 144.4, 144.4 and 144.2 ($C_{\text {triaz }}$), 143.7 ($\left.1^{\prime}-C\right), 140.1,139.9$ and 139.7 (1-C), 139.4 ($\left.1^{\prime}-C, 1-m e r\right)$, 138.9 (4'-C, 1-mer), 138.4, 138.4, 138.4 and 138.3 (1-C, CF ${ }_{3}$ cap; 4-C and 7-C, biph), 135.6, 135.5 and 135.5 ($4^{\prime}-\mathrm{C}$), 131.1, 131.0 and 130.7 (4-C; 4-C, 1-mer; 4-C, CF 3 cap), 130.1 (3-C and 3C, 1-mer), 129.9, 129.8, 129.4, 129.0, 128.9, 128.9, 128.9, 128.4 and 128.4 ($C_{\text {arom }}$), 126.3 ($q, J=$ $\left.4.0 \mathrm{~Hz}, 3-\mathrm{C}_{1} \mathrm{CF}_{3} \mathrm{cap}\right), 122.2,122.2$ and 122.0 (9-C, biph; $\mathrm{CH}_{\text {triaz }}$), 121.6, 121.5, 121.4 and 121.3 (3-C, 1-mer; 3'-C), 120.8 ($\mathrm{CH}_{\text {triaz, }}$ PhO cap), 120.1 (3'-C, 1-mer), 114.9 (2-C, PhO cap), 78.6 (C, alkyne), $73.0(\mathrm{CH}$, alkyne $), 62.0\left(\mathrm{O}-\mathrm{CH}_{2}\right), 53.7\left(\mathrm{~N}-\mathrm{CH}_{2}, \mathrm{CF}_{3} \mathrm{cap}\right), 46.4,46.4$ and $46.4\left(\mathrm{~N}-\mathrm{CH}_{2}\right), 39.9$ and $39.8\left(\mathrm{~N}-\mathrm{CH}_{2}, 1\right.$-mer $)$.
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{F}}=-63.7$.
HRMS (ES+): calcd for $\mathrm{C}_{155} \mathrm{H}_{105} \mathrm{~F}_{3} \mathrm{~N}_{27} \mathrm{O}_{19} 1353.4016[\mathrm{M}+2 \mathrm{H}]^{2+}$, found $1353.4032[\mathrm{M}+2 \mathrm{H}]^{2+}$.
FT-IR (ATR): $v_{\max } 2921,2851,2125,2096,1736,1649,1505,1263,1199,1018$ and $729 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ pre-ZIP $\mathbf{S 9}$.

${ }^{13} \mathrm{C}$-NMR ($\mathbf{1 0 0 . 6 ~ M H z , ~} \mathrm{CDCl}_{3}$) pre-ZIP S9.

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) pre-ZIP S9.
$\xrightarrow[N]{N}$

$\begin{array}{llllllllllllllllllllllllllll}.0 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -2\end{array}$

Experiment 2.

Reagents and solvent: Template $1(0.007 \mathrm{~g}, 0.006 \mathrm{mmol}), 1-\mathrm{mer} 4(0.007 \mathrm{~g}, 0.014 \mathrm{mmol}), 1$ mer 7 ($0.003 \mathrm{~g}, 0.006 \mathrm{mmol}$), EDC ($0.006 \mathrm{~g}, 0.029 \mathrm{mmol}$), DMAP ($0.004 \mathrm{~g}, 0.029 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$.

PreZIP intermediates: 0.012 g as a white foam (78\%). Fig. S3 shows the UPLC traces of the starting template, reaction crude and pure pre-ZIP intermediates. The ratio of phenol and benzoic acid monomers attached to the template, which directly relates to the mutation rate, was determined using ${ }^{1} \mathrm{H}-\mathrm{NMR}$, as shown in the next section for all the experiments.

Fig S3. UPLC traces of: (a) starting template 1. (b) Reaction crude for the attach step. (c) Pure pre-ZIP intermediates from experiment 2. (d) MS spectrum of pure pre-ZIP intermediates (MW: 2703.8). UPLC Conditions: C 18 column at $40^{\circ} \mathrm{C}(254 \mathrm{~nm})$ using water $+0.1 \%$ formic acid (A) and $\mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ formic acid (B) with flow rate of $0.6 \mathrm{ml} / \mathrm{min}$; Gradient of $0-2$ minutes $5 \%-100 \%$ B + 1 minute 100% B.

Experiment 3.

Reagents and solvent: Template $1(0.009 \mathrm{~g}, 0.007 \mathrm{mmol})$, 1-mer 4 ($0.006 \mathrm{~g}, 0.011 \mathrm{mmol}$), 1mer 7 ($0.006 \mathrm{~g}, 0.011 \mathrm{mmol}$), EDC ($0.007 \mathrm{~g}, 0.035 \mathrm{mmol}$), DMAP ($0.004 \mathrm{~g}, 0.035 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$.

PreZIP intermediates: 0.009 g as a white foam (49\%). Fig. S4 shows the UPLC traces of the starting template, reaction crude and pure pre-ZIP intermediates. The ratio of phenol and benzoic acid monomers attached to the template, which directly relates to the mutation rate, was determined using ${ }^{1} \mathrm{H}-\mathrm{NMR}$, as shown in the next section for all the experiments.
(a)

(b)

(c)

Fig S4. UPLC traces of: (a) starting template 1. (b) Reaction crude for the attach step. (c) Pure pre-ZIP intermediates from experiment 3. (d) MS spectrum of pure pre-ZIP intermediates (MW: 2703.8). UPLC Conditions: C 18 column at $40^{\circ} \mathrm{C}(254 \mathrm{~nm})$ using water $+0.1 \%$ formic acid (A) and $\mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ formic acid (B) with flow rate of $0.6 \mathrm{ml} / \mathrm{min}$; Gradient of $0-2$ minutes $5 \%-100 \% \mathrm{~B}+1$ minute 100% B.

Experiment 4.

Reagents and solvent: Template 1 ($0.008 \mathrm{~g}, 0.006 \mathrm{mmol}$), 1-mer 4 ($0.003 \mathrm{~g}, 0.007 \mathrm{mmol}$), 1mer 7 ($0.008 \mathrm{~g}, 0.016 \mathrm{mmol}$), EDC ($0.007 \mathrm{~g}, 0.034 \mathrm{mmol}$), DMAP ($0.004 \mathrm{~g}, 0.034 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$.

PreZIP intermediates: 0.022 g as a white foam (72\%). Fig. S5 shows the UPLC traces of the starting template, reaction crude and pure pre-ZIP intermediates. The ratio of phenol and benzoic acid monomers attached to the template, which directly relates to the mutation rate, was determined using ${ }^{1} \mathrm{H}-\mathrm{NMR}$, as shown in the next section for all the experiments.

Fig S5. UPLC traces of: (a) starting template 1. (b) Reaction crude for the attach step. (c) Pure pre-ZIP intermediates from experiment 4. (d) MS spectrum of pure pre-ZIP intermediates (MW: 2703.8). UPLC Conditions: C 18 column at $40^{\circ} \mathrm{C}(254 \mathrm{~nm})$ using water $+0.1 \%$ formic acid (A) and $\mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ formic acid (B) with flow rate of $0.6 \mathrm{ml} / \mathrm{min}$; Gradient of $0-2$ minutes $5 \%-100 \% \mathrm{~B}+1$ minute $100 \% \mathrm{~B}$.

Experiment 5.

Reagents and solvent: Template $1(0.008 \mathrm{~g}, 0.006 \mathrm{mmol})$, 1-mer $7(0.010 \mathrm{~g}, 0.020 \mathrm{mmol})$, $\operatorname{EDC}(0.006 \mathrm{~g}, 0.031 \mathrm{mmol})$, DMAP ($0.004 \mathrm{~g}, 0.031 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$.

PreZIP intermediate: pre-ZIP S10 (0.015 g, 89\%) as a white foam. Fig. S6 shows the UPLC traces of the starting template, reaction crude and pure pre-ZIP S10. Full characterization of pre-ZIP S10 is provided.

(c)

(d)

Fig S6. UPLC traces of: (a) starting template 1. (b) Reaction crude for the attach step. (c) Pure pre-ZIP intermediate S10. (d) MS spectrum of pure pre-ZIP S10 (MW: 2703.8). UPLC Conditions: C18 column at $40^{\circ} \mathrm{C}(254 \mathrm{~nm})$ using water $+0.1 \%$ formic acid (A) and $\mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ formic acid (B) with flow rate of 0.6 $\mathrm{ml} / \mathrm{min}$; Gradient of $0-3$ minutes $5 \%-100 \%$ B + 1 minute 100% B for (a) and (b); Gradient of 0-2 minutes $65 \%-100 \%$ B + 1 minute 100% B for (c).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=8.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\text {triaz }}\right), 8.19(\mathrm{~m}, 6 \mathrm{H}, 2-\mathrm{H}$, biph $), 8.04(\mathrm{~m}, 6 \mathrm{H}, 3-\mathrm{H})$, 8.00 (s, 1H, CH triaz, PhO cap), 7.75 (s, 1H, CH triaz, CF_{3} cap), 7.65 (m, 2OH,3-H and 8-H, biph; $3^{\prime}-\mathrm{H}$; $3-\mathrm{H}, \mathrm{CF}_{3}$ cap), 7.45 (m, 12H,2-H and $2-\mathrm{H}, 1-\mathrm{mer}$), $7.38\left(\mathrm{~m}, 8 \mathrm{H}, 2^{\prime}-\mathrm{H}\right.$ and $\left.2-\mathrm{H}, \mathrm{CF}_{3} \mathrm{cap}\right), 7.26$ (m partially overlapped, 8H, 3-H, PhO cap; 9-H, biph), 7.15 (m, 6H, 2'-H, 1-mer), $7.09(\mathrm{~m}, 6 \mathrm{H}, 3-\mathrm{H}$, 1-mer), 6.98 (m, 3H, 2-H and 4-H, PhO cap), 6.95 (m, 6H, 3'-H, 1-mer), 5.60 (s, 2H, N-CH, CF_{3} cap), 5.27 (s, $2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}$), 5.24 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}$, internal), 5.23 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}$, internal), 5.18 ($\mathrm{s}, 2 \mathrm{H}$, $\mathrm{N}-\mathrm{CH}_{2}$, internal, next to CF_{3} cap), 4.66 (m, 6H, N-CH2, 1-mer), 2.27 (m,3H, CH, alkyne).
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta_{\mathrm{C}}=169.4,169.3,169.3$ and 169.2 (CO, amide), 164.5, 164.5, 164.3, 164.3 and 164.2 (CO, ester), 158.2 (1-C, PhO cap), 152.3 and 152.3 (4-C, 1-mer), 151.0 and 151.0 (10-C, biph), 145.6 and 145.6 ($C_{\text {triaz, }}$ PhO cap; 4-C, biph) 144.4, 144.4 and 144.2 ($C_{\text {triaz }}$), 143.8 and $143.8\left(1^{\prime}-C\right), 140.2,140.0$ and $140.0(1-C), 139.5$ and 139.4 ($\left.1^{\prime}-C, 1-m e r\right), 138.5$ (1-C, CF_{3} cap; 4'-C, 1-mer), 137.8 (7-C, biph), 135.6, 135.5 and 135.5 (4'-C), 132.5 (1-C, 1-mer), 131.3 ($q, J=32.5 \mathrm{~Hz}, 4-\mathrm{C}, \mathrm{CF}_{3}$ cap), 130.9 and 130.9 (2-C, biph; 4-C), 130.6 (2-C, 1-mer), 130.1 (3-C), $129.8,129.3,129.1,129.1,128.9,128.9,128.6,128.4$ and 128.1 (Carom), 127.4 (3-C, biph), 126.3 ($q, J=4.0 \mathrm{~Hz}, 3-\mathrm{C}, \mathrm{CF}_{3}$ cap), 124.2 ($\mathrm{CH}_{\text {triaz, }} \mathrm{CF}_{3}$ cap), 122.3, 122.3 and 122.2 ($9-\mathrm{C}$, biph; $\mathrm{CH}_{\text {triaz }}$), 121.6, 121.5, 121.4, 121.4 and 121.3 (3-C, 1-mer; $\left.3^{\prime}-\mathrm{C}\right), 120.8\left(\mathrm{CH}_{\text {triaz }}, \mathrm{PhO}\right.$ cap), 120.1 (3'-C, 1mer), 114.8 (2-C, PhO cap), 78.9 (C, alkyne), $72.8\left(\mathrm{CH}\right.$, alkyne), $62.0\left(\mathrm{O}-\mathrm{CH}_{2}\right), 53.7\left(\mathrm{~N}-\mathrm{CH}_{2}, \mathrm{CF}_{3}\right.$ cap), 46.4 and $46.4\left(\mathrm{~N}^{-\mathrm{CH}_{2}}\right), 40.2$ ($\mathrm{N}-\mathrm{CH}_{2}, 1$-mer).
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{F}}=-63.7$.
HRMS (ES+): calcd for $\mathrm{C}_{155} \mathrm{H}_{105} \mathrm{~F}_{3} \mathrm{~N}_{27} \mathrm{O}_{19} 1353.4016[\mathrm{M}+2 \mathrm{H}]^{2+}$, found $1353.3925[\mathrm{M}+2 \mathrm{H}]^{2+}$.
FT-IR (ATR): $v_{\max } 2920,2851,2125,2094,1736,1648,1505,1261,1206,1167$ and $1069 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ Pre-ZIP S10.

${ }^{13} \mathrm{C}$-NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~ C D C l} 3$) Pre-ZIP S10.

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Pre-ZIP S10.
$\stackrel{n}{N}$
ヘิ

Determination of mutator population in preZIP intermediates

${ }^{1} \mathrm{H}$ NMR was used to quantify the population of mutator in the preZIP intermediates from the 1-mer attach experiments 1-5. Fig. S7 shows the stacked ${ }^{1} \mathrm{H}$ NMR for these preZIP intermediates, with expansions of the regions corresponding to the alkyne CH , methylene groups and the aromatic protons. Some signals can be clearly assigned to the benzoic acid (blue) and phenol (red) 1-mer residues attached to the template.

Fig. S7. Stacked ${ }^{1} \mathrm{H}$ NMR for the preZIP intermediates obtained in the monomer attach experiments 1-5 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$). Expansions of the regions corresponding to the alkyne CH , methylene groups and the aromatic protons are shown. Signals assigned to the benzoic acid 1-mer residues are shown in and those for the phenol 1-mers in red.

The alkyne protons for the preZIP intermediates from experiments 2-4 were used to quantify the population of mutator (phenol 1-mer). Deconvolution of these peaks were performed using the Global Spectral Deconvolution (GSD) algorithm provided by MestreNova 10. Fig. S8 shows the fitting model, individual functions and residuals obtained in experiments 2-4. Table 51 shows the areas of the individual curves and the population of mutator extracted from the fitted NMR curves, which are the values used in the x axis in Fig. 8 in the text.

Fig. S8. Deconvolution of the alkyne CH peaks of preZIP intermediates from experiments 2-4 (a-c) using the Global Spectral Deconvolution (GSD) algorithm provided by MestreNova 10. Experimental signal is shown in blue, fitting model in red, individual functions in green and residuals in pink.

Table S1. Areas of the fitted curves shown in green in Fig. S8. The mutator population corresponds to $\chi_{\text {mutator }}=A_{2.27 \mathrm{ppm}} /\left(\mathrm{A}_{2.29 \mathrm{ppm}}+\mathrm{A}_{2.27 \mathrm{ppm}}\right)$.

Attach experiment no.	Area alkyne CH peak for benzoic acid 1-mer (2.29 ppm)	Area alkyne CH peak for phenol 1-mer (2.27 ppm)	$\boldsymbol{\chi}_{\text {mutator }}$
$\mathbf{1}$	100	0	$\mathbf{0}$
$\mathbf{2}$	1577275.3	956123.6	$\mathbf{0 . 3 8}$
$\mathbf{3}$	4893437.4	5688666.4	$\mathbf{0 . 5 4}$
$\mathbf{4}$	1445689.2	4396242.6	$\mathbf{0 . 7 5}$
$\mathbf{5}$	0	100	$\mathbf{1}$

Step 2: ZIP.

Scheme S7 shows the intramolecular CuAAC (ZIP) reaction of the preZIPs intermediates from the five different experiments carried out in the previous section.

Scheme S7.
> General procedure for ZIP reaction.
A solution of 1-(azidomethyl)-4-tert-butylbenzene ${ }^{57}$ in dry and degassed THF (1 mL) was added to a solution of pre-ZIP intermediates in dry and degassed THF under N_{2} atmosphere. $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ and TBTA were added to the solution and the reaction stirred at room temperature for 2 days. After evaporation of the solvent, the crude was precipitated with Pet. Ether and centrifuged (repeated three times) in order to remove the excess of capping azide. The obtained solid was used in the next step without further purification.

Experiment 1.

Reagents and solvent: preZIP S9 ($0.013 \mathrm{~g}, 0.005 \mathrm{mmol}$), 1-(azidomethyl)-4-tert-butylbenzene $(0.069 \mathrm{~g}, 0.363 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}(0.011 \mathrm{~g}, 0.029 \mathrm{mmol})$, TBTA ($0.013 \mathrm{~g}, 0.029 \mathrm{mmol}$) and THF (320 mL).

Fig. S9 shows the UPLC traces of the starting preZIP intermediate $\mathbf{S 9}$ and reaction crude.
(a)

(b)

(c)

Fig S9. UPLC traces of: (a) starting preZIP S9. (b) Reaction crude for the ZIP step. (c) MS spectrum of duplex intermediate (MW: 2892.9). UPLC Conditions: C8 column at $40^{\circ} \mathrm{C}(254 \mathrm{~nm})$ using water $+0.1 \%$ formic acid (A) and $\mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ formic acid (B) with flow rate of $0.6 \mathrm{ml} / \mathrm{min}$; Gradient of $0-2$ minutes $65 \%-100 \%$ B + 1 minute 100% B.

Experiment 2.

Reagents and solvent: preZIPs from the attach experiment $2(0.006 \mathrm{~g}, 0.002 \mathrm{mmol})$, 1-(azidomethyl)-4-tert-butylbenzene ($0.029 \mathrm{~g}, 0.155 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}(0.005 \mathrm{~g}, 0.012$ $\mathrm{mmol})$, TBTA ($0.007 \mathrm{~g}, 0.012 \mathrm{mmol}$) and THF (138 mL).

Fig. S10 shows the UPLC traces of the starting preZIP intermediates and reaction crude.

Fig S10. UPLC traces of: (a) starting preZIP intermediates. (b) Reaction crude for the ZIP step. (c) MS spectrum of duplex intermediate (MW: 2892.9). UPLC Conditions: C8 column at $40{ }^{\circ} \mathrm{C}$ (254 nm) using water $+0.1 \%$ formic acid (A) and $\mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ formic acid (B) with flow rate of $0.6 \mathrm{ml} / \mathrm{min}$; Gradient of $0-2$ minutes $65 \%-100 \% B+1$ minute 100% B.

Experiment 3.

Reagents and solvent: preZIPs from the attach experiment 3 ($0.009 \mathrm{~g}, 0.003 \mathrm{mmol}$), 1-(azidomethyl)-4-tert-butylbenzene ($0.047 \mathrm{~g}, 0.250 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}(0.008 \mathrm{~g}, 0.020$ mmol), TBTA ($0.011 \mathrm{~g}, 0.020 \mathrm{mmol}$) and THF (222 mL).

Fig. S11 shows the UPLC traces of the starting preZIP intermediates and reaction crude.
(a)

(b)

(c)

Fig S11. UPLC traces of: (a) starting preZIP intermediates. (b) Reaction crude for the ZIP step. (c) MS spectrum of duplex intermediate (MW: 2892.9). UPLC Conditions: C8 column at $40^{\circ} \mathrm{C}(254 \mathrm{~nm})$ using water $+0.1 \%$ formic acid (A) and $\mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ formic acid (B) with flow rate of $0.6 \mathrm{ml} / \mathrm{min}$; Gradient of $0-2$ minutes $65 \%-100 \%$ B + 1 minute 100% B.

Experiment 4.

Reagents and solvent: preZIPs from the attach experiment $4(0.007 \mathrm{~g}, 0.003 \mathrm{mmol})$, 1-(azidomethyl)-4-tert-butylbenzene ($0.038 \mathrm{~g}, 0.199 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}(0.006 \mathrm{~g}, 0.016$ $\mathrm{mmol})$, TBTA ($0.009 \mathrm{~g}, 0.016 \mathrm{mmol}$) and THF (177 mL).

Fig. S12 shows the UPLC traces of the starting preZIP intermediates and reaction crude.

(b)

(c)

Fig S12. UPLC traces of: (a) starting preZIP intermediates. (b) Reaction crude for the ZIP step. (c) MS spectrum of duplex intermediate (MW: 2892.9). UPLC Conditions: C8 column at $40{ }^{\circ} \mathrm{C}$ (254 nm) using water $+0.1 \%$ formic acid (A) and $\mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ formic acid (B) with flow rate of $0.6 \mathrm{ml} / \mathrm{min}$; Gradient of $0-2$ minutes $65 \%-100 \%$ B + 1 minute 100% B.

Experiment 5.

Reagents and solvent: preZIP S10 (0.010 g, 0.004 mmol$)$, 1-(azidomethyl)-4-tertbutylbenzene ($0.052 \mathrm{~g}, 0.275 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}(0.008 \mathrm{~g}, 0.022 \mathrm{mmol})$, TBTA (0.012 g , 0.022 mmol) and THF (246 mL).

Fig. S13 shows the UPLC traces of the starting preZIP intermediate S10 and reaction crude.
(a)

(b)

(c)

Fig S13. UPLC traces of: (a) starting preZIP S10. (b) Reaction crude for the ZIP step. (c) MS spectrum of duplex intermediate (MW: 2892.9). UPLC Conditions: C8 column at $40^{\circ} \mathrm{C}$ (254 nm) using water $+0.1 \%$ formic acid (A) and $\mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ formic acid (B) with flow rate of $0.6 \mathrm{ml} / \mathrm{min}$; Gradient of $0-2$ minutes $65 \%-100 \%$ B + 1 minute 100% B.

Step 3: Capping.

Scheme S8 shows the CuAAC capping with phenyl propargyl ether of the duplexes from the five different experiments carried out in the previous section.

Scheme S8.

General procedure for capping reaction.

Phenyl propargyl ether was added to a solution of the corresponding duplex mixtures in dry and degassed THF. $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ and TBTA were added to the previous solution and the reaction stirred overnight at room temperature. After evaporation of the solvent, the crude was precipitated with Pet. Ether and centrifuged (repeated three times) in order to remove the excess of capping alkyne. The obtained solid was used in the next step without further purification.

Experiment 1.

Reagents and solvent: duplex from ZIP experiment 1 (0.005 mmol), phenyl propargyl ether $(0.060 \mathrm{~mL}, 0.484 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}(0.002 \mathrm{~g}, 0.005 \mathrm{mmol})$, TBTA ($0.003 \mathrm{~g}, 0.005 \mathrm{mmol}$) and THF (2 mL).

Fig. S14 shows the UPLC traces of the crude reaction mixtures for the ZIP and capping steps.

Fig S14. UPLC traces of: (a) Reaction crude for the ZIP step from experiment 1. (b) Reaction crude for the capping step. (c) MS spectrum of capped duplex intermediate (MW: 3024.9). UPLC Conditions: C8 column at $40^{\circ} \mathrm{C}(254 \mathrm{~nm})$ using water $+0.1 \%$ formic acid (A) and $\mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ formic acid (B) with flow rate of $0.6 \mathrm{ml} / \mathrm{min}$; Gradient of $0-2$ minutes $65 \%-100 \% \mathrm{~B}+1$ minute $100 \% \mathrm{~B}$.

Experiment 2.

Reagents and solvent: duplex from ZIP experiment $2(0.002 \mathrm{mmol})$, phenyl propargyl ether $(0.027 \mathrm{~mL}, 0.207 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right){ }_{4} \mathrm{PF}_{6}(0.001 \mathrm{~g}, 0.003 \mathrm{mmol})$, TBTA ($0.001 \mathrm{~g}, 0.003 \mathrm{mmol}$) and THF (3 mL).

Fig. S15 shows the UPLC traces of the crude reaction mixtures for the ZIP and capping steps.

Fig S15. UPLC traces of: (a) Reaction crude for the ZIP step from experiment 2. (b) Reaction crude for the capping step. (c) MS spectrum of capped duplex intermediate (MW: 3024.9). UPLC Conditions: C8 column at $40^{\circ} \mathrm{C}(254 \mathrm{~nm})$ using water $+0.1 \%$ formic acid (A) and $\mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ formic acid (B) with flow rate of $0.6 \mathrm{ml} / \mathrm{min}$; Gradient of $0-2$ minutes $65 \%-100 \%$ B + 1 minute 100% B.

Experiment 3.

Reagents and solvent: duplex from ZIP experiment 3 (0.003 mmol), phenyl propargyl ether $(0.042 \mathrm{~mL}, 0.330 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right){ }_{4} \mathrm{PF}_{6}(0.001 \mathrm{~g}, 0.003 \mathrm{mmol})$, TBTA $(0.001 \mathrm{~g}, 0.003 \mathrm{mmol})$ and THF (5 mL).

Fig. S16 shows the UPLC traces of the crude reaction mixtures for the ZIP and capping steps.
(a)

(b)

(c)

Fig S16. UPLC traces of: (a) Reaction crude for the ZIP step from experiment 3. (b) Reaction crude for the capping step. (c) MS spectrum of capped duplex intermediate (MW: 3024.9). UPLC Conditions: C8 column at $40^{\circ} \mathrm{C}(254 \mathrm{~nm})$ using water $+0.1 \%$ formic acid (A) and $\mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ formic acid (B) with flow rate of $0.6 \mathrm{ml} / \mathrm{min}$; Gradient of $0-2$ minutes $65 \%-100 \%$ B + 1 minute 100\% B.

Experiment 4.

Reagents and solvent: duplex from ZIP experiment 4 (0.003 mmol), phenyl propargyl ether $(0.034 \mathrm{~mL}, 0.266 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right){ }_{4} \mathrm{PF}_{6}(0.001 \mathrm{~g}, 0.003 \mathrm{mmol})$, TBTA ($0.001 \mathrm{~g}, 0.003 \mathrm{mmol}$) and THF (3 mL).

Fig. S17 shows the UPLC traces of the crude reaction mixtures for the ZIP and capping steps.

Fig S17. UPLC traces of: (a) Reaction crude for the ZIP step from experiment 4. (b) Reaction crude for the capping step. (c) MS spectrum of capped duplex intermediate (MW: 3024.9). UPLC Conditions: C8 column at $40^{\circ} \mathrm{C}(254 \mathrm{~nm})$ using water $+0.1 \%$ formic acid (A) and $\mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ formic acid (B) with flow rate of $0.6 \mathrm{ml} / \mathrm{min}$; Gradient of $0-2$ minutes $65 \%-100 \%$ B + 1 minute 100\% B.

Experiment 5.

Reagents and solvent: duplex from ZIP experiment 5 (0.004 mmol), phenyl propargyl ether $(0.047 \mathrm{~mL}, 0.370 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right){ }_{4} \mathrm{PF}_{6}(0.001 \mathrm{~g}, 0.004 \mathrm{mmol})$, TBTA ($0.002 \mathrm{~g}, 0.004 \mathrm{mmol}$) and THF (5 mL).

Fig. S18 shows the UPLC traces of the crude reaction mixtures for the ZIP and capping steps.

Fig S18. UPLC traces of: (a) Reaction crude for the ZIP step from experiment 5. (b) Reaction crude for the capping step. (c) MS spectrum of capped duplex intermediate (MW: 3024.9). UPLC Conditions: C8 column at $40^{\circ} \mathrm{C}(254 \mathrm{~nm})$ using water $+0.1 \%$ formic acid (A) and $\mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ formic acid (B) with flow rate of $0.6 \mathrm{ml} / \mathrm{min}$; Gradient of $0-2$ minutes $65 \%-100 \%$ B + 1 minute 100% B.

Step 4: Hydrolysis.

Scheme S9 shows the cleavage step of the capped duplexes from the five different experiments carried out in the previous section. Basic hydrolysis of the ester bonds regenerates the template 1 along with products $\mathbf{8 - 1 5}$, whose proportion is related to the mutation rate, and the traceless biphenyl linker.

Scheme S9.
General procedure for cleavage.
The crude reaction mixture from previous step was dissolved in THF: $\mathrm{H}_{2} \mathrm{O} 3: 1$ and 1 M LiOH soln. was added. The solution was left to react overnight at $5^{\circ} \mathrm{C}$. Then, the crude was diluted with $\mathrm{H}_{2} \mathrm{O}$ and acidified with 0.1 M HCl soln. to $\mathrm{pH} 2-3$. The aqueous phase was extracted with EtOAc ($3 x$) and the combined organic phase was washed with 0.01 M EDTA soln. $(2 x), \mathrm{H}_{2} \mathrm{O}(1 x)$, brine (1x), dried over MgSO_{4} and evaporated to dryness.

Experiment 1.

Reagents and solvent: capped duplex from capping experiment 1 (0.005 mmol), 1 M LiOH soln. ($0.20 \mathrm{~mL}, 0.20 \mathrm{mmol}$), THF: $\mathrm{H}_{2} \mathrm{O} 3: 1(4 \mathrm{~mL})$. After work-up, the obtained residue was purified by flash column chromatography on silica gel using a gradient from 0% to 20% of MeOH (containing 0.01% of aq. HCl) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Fig. S19 shows the UPLC traces of the reaction crude and after purification along with the MS spectra of the recovered template (1) and templated product AAA (8).

Fig S19. UPLC traces of: (a) Reaction crude for the cleavage step for experiment 1. (b) After chromatography purification. (c) After chromatography purification using a different UPLC gradient (see details below). (d) MS spectra of the recovered template 1 ($\mathrm{t}_{\mathrm{R}}=1.9 \mathrm{~min}$ in the chromatogram shown in (c); MW = 1294.2) and the templated product AAA $8\left(t_{R}=3.0 \mathrm{~min}\right.$ in the chromatogram shown in (c); MW $=1282.4)$. UPLC Conditions: C18 column at $40^{\circ} \mathrm{C}(254 \mathrm{~nm})$ using water $+0.1 \%$ formic acid (A) and $\mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ formic acid (B) with flow rate of $0.6 \mathrm{ml} / \mathrm{min}$; Gradient of $0-2$ minutes $35 \%-65 \% \mathrm{~B}+1$ minute 100% B for (a) and (b). Gradient of 0-4 minutes from 45% to 50% B + 1 minute 100% B for (c).

Experiment 2.

Reagents and solvent: capped duplex from capping experiment 2 (0.002 mmol), 1 M LiOH soln. ($0.10 \mathrm{~mL}, 0.10 \mathrm{mmol})$, THF: $\mathrm{H}_{2} \mathrm{O}$ 3:1 (2 mL).

Fig. S20 shows the UPLC traces of the reaction crude and the MS spectra of the recovered template (1) and templated products 8-15.

(b)

$$
\mathrm{t}_{\mathrm{R}}=1.9 \mathrm{~min} \text { (template) }
$$

$$
t_{\mathrm{R}}=2.6 \min (\mathrm{PPP})
$$

$\mathrm{t}_{\mathrm{R}}=2.7 \mathrm{~min}(\mathrm{APP} / \mathrm{PAP} / \mathrm{PPA})$

$$
\mathrm{t}_{\mathrm{R}}=2.9 \min (\mathrm{AAP} / \mathrm{APA} / \mathrm{PAA})
$$

Fig S20. UPLC traces of: (a) Reaction crude for the cleavage step for experiment 2. Amplification of the region corresponding to the templated products is shown on the right. (b) MS spectra of the recovered template 1 ($\mathrm{t}_{\mathrm{R}}=1.9 \mathrm{~min} ; \mathrm{MW}=1294.2$) and the templated products PPP $15\left(\mathrm{t}_{\mathrm{R}}=2.6 \mathrm{~min} ; \mathrm{MW}=1198.3\right)$, APP/PAP/PPA 12-14 ($\mathrm{t}_{\mathrm{R}}=2.7 \mathrm{~min} ; \mathrm{MW}=1226.3$), AAP/APA/PAA 9-11 ($\mathrm{t}_{\mathrm{R}}=2.9 \mathrm{~min} ; \mathrm{MW}=1254.3$) and AAA 8 ($\left.\mathrm{t}_{\mathrm{R}}=3.0 \mathrm{~min} ; \mathrm{MW}=1282.4\right)$. UPLC Conditions: C 18 column at $40^{\circ} \mathrm{C}(254 \mathrm{~nm})$ using water $+0.1 \%$ formic acid (A) and $\mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ formic acid (B) with flow rate of $0.6 \mathrm{ml} / \mathrm{min}$; Gradient of $0-4$ minutes from 45% to 50% B + 1 minute 100% B.

Experiment 3.

Reagents and solvent: capped duplex from capping experiment 3 (0.003 mmol), 1 M LiOH soln. ($0.10 \mathrm{~mL}, 0.10 \mathrm{mmol}$), THF: $\mathrm{H}_{2} \mathrm{O} 3: 1(2 \mathrm{~mL})$.

Fig. S21 shows the UPLC traces of the reaction crude and the MS spectra of the recovered template (1) and templated products 8-15.
(a)

(b)

$t_{R}=2.9 \min (A A P / A P A / P A A)$

$t_{R}=3.0 \mathrm{~min}(A A A)$

Fig S21. UPLC traces of: (a) Reaction crude for the cleavage step for experiment 3. Amplification of the region corresponding to the templated products is shown on the right. (b) MS spectra of the recovered template 1 ($\mathrm{t}_{\mathrm{R}}=1.9 \mathrm{~min} ; \mathrm{MW}=1294.2$) and the templated products PPP $15\left(\mathrm{t}_{\mathrm{R}}=2.6 \mathrm{~min} ; \mathrm{MW}=1198.3\right)$, APP/PAP/PPA 12-14 ($\mathrm{t}_{\mathrm{R}}=2.7 \mathrm{~min} ; \mathrm{MW}=1226.3$), AAP/APA/PAA 9-11 ($\mathrm{t}_{\mathrm{R}}=2.9 \mathrm{~min} ; \mathrm{MW}=1254.3$) and AAA $8\left(\mathrm{t}_{\mathrm{R}}=3.0 \mathrm{~min} ; \mathrm{MW}=1282.4\right)$. UPLC Conditions: C 18 column at $40^{\circ} \mathrm{C}(254 \mathrm{~nm})$ using water $+0.1 \%$ formic acid (A) and $\mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ formic acid (B) with flow rate of $0.6 \mathrm{ml} / \mathrm{min}$; Gradient of $0-4$ minutes from 45% to $50 \% B+1$ minute $100 \% B$.

Experiment 4.

Reagents and solvent: capped duplex from capping experiment 3 (0.003 mmol), 1 M LiOH soln. ($0.10 \mathrm{~mL}, 0.10 \mathrm{mmol}$), THF: $\mathrm{H}_{2} \mathrm{O} 3: 1$ (2 mL).

Fig. S22 shows the UPLC traces of the reaction crude and the MS spectra of the recovered template (1) and templated products 8-15.
(a)
(b)

 $t_{R}=2.6 \mathrm{~min}(P P P)$

$$
t_{R}=2.7 \min (\mathrm{APP} / \mathrm{PAP} / \mathrm{PPA})
$$

$t_{R}=2.9 \min (A A P / A P A / P A A)$

$$
t_{R}=3.0 \min (A A A)
$$

Fig S22. UPLC traces of: (a) Reaction crude for the cleavage step for experiment 4. Amplification of the region corresponding to the templated products is shown on the right. (b) MS spectra of the recovered template $1\left(t_{R}=1.9 \mathrm{~min} ; \mathrm{MW}=1294.2\right)$ and the templated products PPP $15\left(\mathrm{t}_{\mathrm{R}}=2.6 \mathrm{~min} ; \mathrm{MW}=1198.3\right)$, APP/PAP/PPA 12-14 ($\mathrm{t}_{\mathrm{R}}=2.7 \mathrm{~min} ; \mathrm{MW}=1226.3$), AAP/APA/PAA 9-11 ($\mathrm{t}_{\mathrm{R}}=2.9 \mathrm{~min} ; \mathrm{MW}=1254.3$) and AAA $8\left(\mathrm{t}_{\mathrm{R}}=3.0 \mathrm{~min}\right.$; MW = 1282.4). UPLC Conditions: C 18 column at $40^{\circ} \mathrm{C}(254 \mathrm{~nm})$ using water $+0.1 \%$ formic acid (A) and $\mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ formic acid (B) with flow rate of $0.6 \mathrm{ml} / \mathrm{min}$; Gradient of $0-4$ minutes from 45% to 50% B + 1 minute 100\% B.

Experiment 5.

Reagents and solvent: capped duplex from capping experiment 5 (0.004 mmol), 1 M LiOH soln. ($0.20 \mathrm{~mL}, 0.20 \mathrm{mmol}$), THF: $\mathrm{H}_{2} \mathrm{O} 3: 1(4 \mathrm{~mL})$. After work-up, the obtained residue was purified by flash column chromatography on silica gel using a gradient from 0% to 20% of MeOH (containing 0.01% of aq. HCl) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Fig. S23 shows the UPLC traces of the reaction crude and after purification along with the MS spectra of the recovered template (1) and templated product PPP (15).
(a)

(c)

(d)

$$
\mathrm{t}_{\mathrm{R}}=1.9 \mathrm{~min} \text { (template) }
$$

Fig S23. UPLC traces of: (a) Reaction crude for the cleavage step for experiment 5. (b) After chromatography purification. (c) After chromatography purification using a different UPLC gradient (see details below). (d) MS spectra of the recovered template 1 ($\mathrm{t}_{\mathrm{R}}=1.9 \mathrm{~min}$ in the chromatogram shown in (c); MW = 1294.2) and the templated product PPP 15 ($\mathrm{t}_{\mathrm{R}}=2.6 \mathrm{~min}$ in the chromatogram shown in (c); MW = 1198.3). UPLC Conditions: C18 column at $40^{\circ} \mathrm{C}(254 \mathrm{~nm})$ using water $+0.1 \%$ formic acid (A) and $\mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ formic acid (B) with flow rate of $0.6 \mathrm{ml} / \mathrm{min}$; Gradient of $0-2$ minutes $35 \%-65 \% \mathrm{~B}+1$ minute 100% B for (a) and (b). Gradient of 0-4 minutes from 45% to 50% B + 1 minute 100% B for (c).

Determination of sequence population after covalent template-directed mutation

The populations of the obtained products 8-15 were calculated by deconvoluting the UPLC peaks using the open-source curve-fitting software Fityk (version 1.3.1). ${ }^{58}$ The UPLC traces were exported in CSV format from Waters MassLynx ${ }^{\text {TM }}$ software (version 4.2) using Microsoft ${ }^{\circledR}$ Excel ${ }^{\circledR}$. The peaks corresponding to the templated products 8-15 were fitted to a Gaussian function using the PRAXIS fitting method provided in Fityk. PAP-APP and PAA-APA pairs were fitted to single Gaussian functions as their peaks are not resolved enough. Fig. S24 shows the fitting model, individual functions and residuals obtained in experiments 2-4.

residual
(b) exp 3

(c) $\exp 4$

Fig. S24. Deconvolution of the UPLC peaks for the templated products from experiments 2-4 using Fityk 1.3.1. PAP-APP and PAA-APA pairs were fitted to single gaussian functions. Experimental signal is shown in blue, fitting model in red, individual functions in green and residuals in pink.

Tables S2-4 show the areas of the individual curves and the population of each sequence extracted from the fitted UPLC curves for experiments 2-4, which are the values used in the y axis in Fig. 8 in the text (for experiments 1 and 5, the single templated product obtained is considered as 100\%).

Table S2. Areas of the fitted curves shown in green in Fig. S24 for experiment 2.

	PPP	PPA	PAP/APP	PAA/APA	AAP	AAA
t_{R}	2.6257	2.71461	2.77145	2.84628	2.90734	2.99975
absolute area	156.531	278.822	253.786	532.01	235.688	322.738
population (\%)	8.8	15.7	14.3	29.9	13.2	18.1
population per sequence family (\%)	8.8	29.9		43.1		18.1

Table S3. Areas of the fitted curves shown in green in Fig. S24 for experiment 3.

	PPP	PPA	PAP/APP	PAA/APA	AAP	AAA
$\mathbf{t}_{\boldsymbol{R}}$	2.70492	2.78346	2.841	2.92695	2.99661	3.10064
absolute area	2283.63	1115.44				
population (\%)	17.9	8.7	2878.06	3386.26	1272.94	1145.19
26.5	10.0	9.0				
population per sequence family (\%)	$\mathbf{1 7 . 9}$	$\mathbf{3 6 . 7}$		$\mathbf{3 6 . 5}$		$\mathbf{9 . 0}$

Table S4. Areas of the fitted curves shown in green in Fig. S24 for experiment 4.

	PPP	PPA	PAP/APP	PAA/APA	AAP	AAA
\mathbf{t}_{R}	2.65151	2.7216	2.77688	2.86114	2.91394	3.02657
absolute area	4445.78	575.158	3253.2	1173.85	537.166	210.923
population (\%)	43.6	5.6	31.9	11.5	5.3	2.1
population per sequence family (\%)	$\mathbf{4 3 . 6}$	$\mathbf{3 7 . 5}$			$\mathbf{1 6 . 8}$	
$\mathbf{2 n y y y y}$		$\mathbf{2 . 1}$				

References

[S1] D. Núñez-Villanueva, M. Ciaccia, G. Iadevaia, E. Sanna, C. A. Hunter. Chem. Sci. 2019, 10, 5258.
[S2] E. R. Zubarev, M. U. Pralle, E. D. Sone, S. I. Stupp. J. Am. Chem. Soc. 2001, 123, 4105.
[S3] P. Gopalan, X. Li, M. Li, C. K. Ober, C. P. Gonzales, C. J. Hawker. J. Polym. Sci. Part A: Polym. Chem. 2003, 41, 3640.
[S4] D. Núñez-Villanueva, C. A. Hunter. Org. Biomol. Chem. 2019, 17, 9660.
[S5] M. Ciaccia, D. Núñez-Villanueva, C. A. Hunter. J. Am. Chem. Soc. 2019, 141, 10862.
[S6] D. Núñez-Villanueva, M. Ciaccia, C. A. Hunter. RSC Adv. 2019, 9, 29566.
[S7] Y.-S. Lee, S. M. Park, H. M. Kim, S.-K. Park, K. Lee, C. W. Lee, B. H. Kim. Bioorg. Med. Chem. Lett. 2009, 19, 4688.
[S8] https://fityk.nieto.pl/.

