Supporting Information

In-situ self-activation synthesis of binary-heteroatom co-doped 3D coralline-like microporous carbon nanosheets for high-efficient energy storage in flexible all-solid-state symmetrical supercapacitors

Binbin Chang*, Lei Wang, Weiwei Shi, Yuting Chai, Shouren Zhang, Baocheng Yang*,

Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China

*Corresponding author. <u>Tel. Fax: +86 571 87541018.</u> <u>E-mail address: binbinchang@infm.hhstu.edu.cn (B. Chang);</u> <u>baochengyang@infm.hhstu.edu.cn (B. Yang)</u>

Fig. S1 The dependence of C_{EDLC} on microporosity

Fig. S2 The relationship between C_p and the doping level of N/O species

Sample	XPS analysis (atom%)				
Sample	С	Ν	0		
MCNS	69.79		30.21		
NMCNS-0.5	75.52	1.05	23.43		
NMCNS-1	81.74	2.46	15.80		
NMCNS-2	87.92	3.32	8.86		

Table S1 XPS analysis of the MCNS and NMCNS samples

Materials	Capacitance (F g ⁻¹)	Current density	Electrolyte	Energy density (Wh kg ⁻¹)	Power density (W kg ⁻¹)	Electrolyte	Ref.
Sorghum stalk based porous carbons	216.5	0.5 A g ⁻¹	2 М КОН	9.77	225.35	0.5 M Na ₂ SO ₄	1
N,O co-doped highly porous carbon microflakes	278	1A g ⁻¹	2 M H ₂ SO ₄	9.5	500	$2 \text{ M H}_2 \text{SO}_4$	2
N-doped yolk–shell hollow mesoporous carbon	169	1 A g ⁻¹	1 M H ₂ SO ₄	7.6	_	1 M H ₂ SO ₄	3
S, N co-doped porous carbon sheets	275	0.5 A g ⁻¹	6 М КОН	7.8	250	6 M KOH	4
Porous graphitic biomass carbon	222	0.5A g ⁻¹	KOH/PVA	6.68	100.2	KOH/PVA	5
torreya grandis shell- derived porous carbon	290.1	0.5 A g ⁻¹	6 M KOH	13.5	360.1	0.5 M Na ₂ SO ₄	6
Biomass-derived activated carbon materials	156	0.5 A g ⁻¹	1 M H ₂ SO ₄	7.8	150.2	1 M H ₂ SO ₄	7
Oily sludge-derived hierarchical porous carbons	348.1	0.5 A g ⁻¹	6 M KOH	7.22	100	KOH/PVA	8
Biomass-based N- doped porous carbon nanosheet	240.7	1 A g ⁻¹	6 M KOH	10.2	351	KOH/PVA	9
N-self-doped carbon nanofiber aerogels	224	0.5 A g ⁻¹	$2 \text{ M H}_2 \text{SO}_4$	5.7	125	KOH/PVA	10
NMCNS-1	356	0.5 A g ⁻¹	6 М КОН	16.3	180.1	0.5 M Na ₂ SO ₄	This
				11.1	102.5	KOH/PVA	work

 Table S2 The comparison of electrochemical capacitive performance of NMCNS-1 with reported carbon-based electrode materials

References

- [1] G. Ma, F. Hua, K. Sun, Z. Zhang, E. Feng, H Peng and Z. Lei, Porous carbon derived from sorghum stalk for symmetric supercapacitors, RSC Adv., 2016, 6, 103508–103516.
- [2] F. Ma, J. Wan, G. Wu and H. Zhao, Highly porous carbon microflakes derived from catkins for high-performance supercapacitors, RSC Adv., 2015, 5, 44416–44422.
- [3] C. Liu, J. Wang, J. Li, M. Zeng, R. Luo, J. Shen, X. Sun, W. Han, Synthesis of N-doped hollowstructured mesoporous carbon nanospheres for high-performance supercapacitors, ACS Appl. Mater. Interfaces 2016, 8, 7194–7204.
- [4] T. Wei, X. Wei, L. Yang, H. Xiao, Y. Gao, H. Li, A one-step moderate-explosion assisted carbonization strategy to sulfur and nitrogen dual-doped porous carbon nanosheets derived from camellia petals for energy storage, J. Power Sources, 2016, 331, 373–381.
- [5] Y. Gong, D. Li, C. Luo, Q. Fu, C. Pan, Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors, Green Chem., 2017, 19, 4132–4140.
- [6] H. Xuan, G. Lin, F. Wang, J. Liu, X. Dong, F. Xi, Preparation of biomass-activated porous carbons derived from torreya grandis shell for high-performance supercapacitor, J. Solid State Electrochem., 2017, 8, 2241–2249.
- [7] N. Sudhan, K. Subramani, M. Karnan, N. Ilayaraja, M. Sathish, Biomass-derived activated porous carbon from rice straw for a high-energy symmetric supercapacitor in aqueous and non-aqueous electrolytes, Energy Fuels 2017, 31, 977–985.
- [8] X. Li, K. Liu, Z. Liu, Z. Liu, Z. Wang, B. Li, D. Zhang, Hierarchical porous carbon from hazardous waste oily sludge for all-solid-state flexible supercapacitor, Electrochimica Acta, 2017, 240, 43–52.
- [9] M. F. Cheng, D. Yu, X. Z. Zheng, X. P. Dong, Biomass based N-doped hierarchical porous carbon nanosheets for all-solid-state supercapacitors, Journal of Energy Storage, 2019, 21, 105–112.
- [10] H. Chen, T. Liu, J. Mou, W. Zhang, Z. Jiang, J. Liu, J. Huang, M. Liu, Free-standing N-selfdoped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors, Nano Energy, 2019, 63, 103836.