Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020

-Electronic Supplementary Information-

Figure S1. Enlarge TEM images of CeO₂/Co@NCH.

Figure S2. The element mapping of Ce, O, Co, C, N in CeO₂/Co@NCH.

Figure S3. XPS high-resolution Ce 3d (a), C 1s (b), N 1s (c) and O 1s (d) spectra of CeO₂@NCH.

Figure S4. XPS high-resolution O 1s (a), N 1s (b) and C 1s (c) spectra of NCH.

Figure S5. XPS high-resolution N 1s (a), O 1s (b), C 1s (c) and Co (d) spectra of Co@NCH.

Figure S6. CV curves of NCH, Co@NCH and CeO2@NCH recorded in O2 saturated

0.1 M KOH.

Figure S7. LSV curves of NCH, CeO₂@NCH and Co@NCH measured at different rotating rates and corresponding K-L plots at various potential range.

Figure S8. The pore size distribution curves of NCH, Co@NCH, CeO₂@NCH and CeO₂/Co@NCH.

Figure S9. (a) methanol tolerance measurement of CeO₂/Co@NCH and Pt/C samples upon introducing 3M methanol after about 200 s at 0.6 V vs. RHE. (b) i-t chronoamperometric stability measurement of CeO₂/Co@NCH and Pt/C samples at 0.565 V vs. RHE. (c) The OER and HER stability of CeO₂/Co@NCH under a constant current density of 10 mA cm⁻² for 100000 s.

Figure S10. (a) Schematic illustration of the rechargeable zinc-air battery. (b) Photograph showing a series of LED powered by two liquid zinc-air batteries with the $CeO_2/Co@NCH$ cathode connected in series.

Figure S11. Galvanostatic discharge-charge cycling curves at 5 mA cm⁻² of recharged Zn-air batteries with the Pt/C catalyst on carbon paper.

Figure S12. TEM (a) HRTEM (b) and SEM (c) images for CeO₂/Co@NCH after

40000 s chronoamperometric test.

Figure S13. CV curves of CeO₂/Co@NCH in O₂ saturated 0.1 M KOH solution

before and after 40000 s chronoamperometric test.

Figure S14. Polarization curves of Pt/C||RuO₂ in N₂-saturated 1M KOH.

•••••••••••••••••••••••••••••••••••••••							
Electrocatalysts	E _{onset}	$E_{1/2}$ [V]	Medium	$\eta_{\text{OER},}[\text{mV}]@$ $j[\text{mA}\cdot\text{cm}^{-2}]$	η _{HER,} [mV]@ j[mA·cm ⁻²]	Medium	Refs.
CeO ₂ /Co(OH) ₂ HCs				410@10	317@10	1M KOH	[1]
MoS ₂ -G-Ni					>600@10	0.1M KOH	[2]
Ni-Zn/CeO ₂					410@2.74	1M KOH	[3]
$g\text{-}C_3N_4/CeO_2/Fe_3O_4$				400@10	310@10	1M KOH	[4]
3D-rGO-CeO ₂					341@10	1 M KOH	[5]
Co ₃ O ₄ @Z67-NT@CeO ₂	~0.95	0.88	0.1 M	350@10		0.1M KOH	[6]
Ni ₂ P-CeO ₂ /TM					84@20	1 M KOH	[7]
Fe _x Ni _y /CeO ₂ /NC				240@10	240@10	1 M KOH	[8]
Co-CeO ₂ /N-CNR	~0.90	0.82		410@10		0.1M KOH	[9]
Co@NPC-900	0.88	0.76		380@10		0.1M KOH	[10]
Ni/CeO ₂ /CNTs					~220@10	1 M KOH	[11]
CoCe-600N ₂	~0.97	~0.86	0.1 M	274@10		0.1M KOH	[12]
CeO2-Cu3P/NF					~91@10	1 M KOH	[13]
Co-W/CeO ₂					166@10	1 M NaOH	[14]
Co-CeO ₂ -N-C	0.89	0.82	0.1 M	326@10		1 M KOH	[15]
CeO ₂ /rGO	0.946	0.84	0.1 M	500@10		0.1M KOH	[16]
CeO ₂ nanowires	0.756	0.666	0.1 M	700@10		0.1M KOH	[17]

Table S1 Comparison of ORR/OER performances of some reported CeO₂-based electrocatalysts.

References

- [1] M.-C. Sung, G.-H. Lee and D.-W. Kim, J. Alloys Compd., 2019, 800, 450-455.
- [2] X. Geng, W. Wu, N. Li, W. Sun, J. Armstrong, Adv. Funct. Mater., 2014, 24, 6123-6129.
- [3] Z. Zheng, N. Li, C.-Q. Wang, D.-Y. Li, F.-Y. Meng and Y.-M. Zhu, J. Power Sources, 2013, 222, 88-91.
- [4] J. Rashid, N. Parveen, T. u. Haq, A. Iqbal, S. H. Talib, S. U. Awan, N. Hussain and M. Zaheer, *ChemCatChem*, 2018, 10, 5587-5592.

- [5] M. Liu, Z. Ji, X. Shen, H. Zhou, J. Zhu, X. Xie, C. Song, X. Miao, L. Kong and G. Zhu, *Eur. J. Inorg. Chem.*, 2018, 2018, 3952-3959.
- [6] X. Li, S. You, J. Du, Y. Dai, H. Chen, Z. Cai, N. Ren and J. Zou, J. Mater. Chem. A, 2019, 7, 25853-25864.
- [7] M. Zhang, Q. Dai, H. Zheng, M. Chen and L. Dai, Adv. Mater., 2018, 30, 1705431.
- [8] L. Chen, H. Jang, M. G. Kim, Q. Qin, X. Liu and J. Cho, *Inorg. Chem. Front.*, 2020, DOI: 10.1039/c9qi01251f.
- [9] A. Sivanantham, P. Ganesan and S. Shanmugam, Appl. Catal. B, 2018, 237, 1148-1159.
- [10] H.-S. Lu, H. Zhang, R. Liu, X. Zhang, H. Zhao and G. Wang, Appl. Surf. Sci., 2017, 392, 402-409.
- [11] C. Zhang, W. Zhang, N. E. Drewett, X. Wang, S. J. Yoo, H. Wang, T. Deng, J. G. Kim, H. Chen, K. Huang, S. Feng and W. Zheng, *ChemSusChem*, 2019, **12**, 1000-1010.
- [12] X. He, X. Yi, F. Yin, B. Chen, G. Li and H. Yin, J. Mater. Chem. A, 2019, 7, 6753-6765.
- [13] Z. Wang, H. Du, Z. Liu, H. Wang, A. M. Asiri and X. Sun, Nanoscale, 2018, 10, 2213-2217.
- [14] M. Sheng, W. Weng, Y. Wang, Q. Wu and S. Hou, J. Alloys Compd., 2018, 743, 682-690.
- [15] Z. Zhang, D. Gao, D. Xue, Y. Liu, P. Liu, J. Zhang and J. Qian, *Nanotechnol.*, 2019, **30**, 395401.
- [16] L. Sun, L. Zhou, C. Yang and Y. Yuan, Int. J. Hydrogen Energy, 2017, 42, 15140-15148.
- [17] Y. Yang, T. Yue, Y. Wang, Z. Yang and X. Jin, Microchem. J., 2019, 148, 42-50.