Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020

Supplementary Material

Carbon coated 3D Nb₂O₅ hollow nanospheres with superior performance

as the anode for high energy Li-ion capacitors

Haoran Li, ^{‡a} Dong Li, ^{‡a} Jing Shi, ^{*a} Zeyin He, ^a Zongchen Zhao, ^a Huanlei Wang ^{*a}

^a School of Materials Science and Engineering, Ocean University of China, Qingdao

266100, People's Republic of China

[‡]These authors contribute equally to this work.

*Corresponding authors.

E-mail address: shijing@ouc.edu.cn (J. Shi); huanleiwang@gmail.com (H. Wang).

Fig. S1 Thermogravimetric curves of 3D Nb₂O₅@C hollow nanosphere composite in air.

Fig. S2 (a) CV cures of Nb₂O₅ at 0.1 mV s⁻¹. (b) Galvanostaic charge-discharge profiles of Nb₂O₅ at 0.1 A g⁻¹.

Fig. S3 Nyquist plots of Nb₂O₅ and 3D Nb₂O₅@C electrodes after 500 cycles and the corresponding equivalent circuit.

After 500 cycles, the impedance spectra are composed of three parts. The first semicircle is associated with the Li⁺ migration in the electrode surface. The second semicircle is related to the charge transfer. The sloping line is bound up with the Li⁺ diffusion. As shown in the corresponding equivalent circuits, R_e represents the ohmic resistance, R_{ct} is charge transfer resistance and W_s is the Warburg impedance

Fig. S4 (a) Galvanostaic charge-discharge profiles of GCN at 0.1 A g^{-1} . (b) Rate capacities at various current densities from 0.1 to 10 A g^{-1} . (c) Cycling performance and the related coulombic efficiency for GCN at 5 A g^{-1} for 1000 cycle.

Hybrid system	Voltage Window	Energy Density/ Power Density	Cyclability	Ref.
3DNb ₂ O ₅ @C//G CN (Li ⁺)	0-3.5 V	96.8 Wh kg ⁻¹ at 435.5 W kg ⁻¹ 12.6 Wh kg ⁻¹ at 41000 W kg ⁻¹	75% after 3000 cycles at 5A g ⁻¹	This work
CNT/Nb ₂ O ₅ //AC (Li ⁺)	0.5-3 V	33.5Wh kg ⁻¹ at 83 W kg ⁻¹ ~4 Wh kg ⁻¹ at 4000 W kg ⁻¹	-	1
Nb ₂ O ₅ //AC (Li ⁺)	1-3.5 V	95.55 Wh kg ⁻¹ at 191 W kg ⁻¹ 65/39 Wh kg ⁻¹ at 5350.9 W kg ⁻¹	-	2
CNT ₈ -Nb ₂ O ₅ //AC (Li ⁺)	0.5-3 V	~50 Wh kg ⁻¹ at 86.46 W kg ⁻¹ 14.77 Wh kg ⁻¹ at 6753.5 W kg ⁻¹	_	3
T-Nb ₂ O ₅ /graphene//MC (Li ⁺)	0.8-3 V	48 Wh kg ⁻¹ at 690 W kg ⁻¹ 13 Wh kg ⁻¹ at 16000 W kg ⁻¹	\sim 92% after 3000 cycles at 1A g ⁻¹	4
m-Nb ₂ O ₅ - C//MSP-20 (Li ⁺)	0-3 V	20 Wh kg ⁻¹ at 12137 W kg ⁻¹ 15 Wh kg ⁻¹ at 18510 W kg ⁻¹	90% after 1000 cycles at 1A g ⁻¹	5
<i>T</i> - Nb ₂ O ₅ @C//MSP- 20 (Li ⁺)	1-3.5 V	63 Wh kg ⁻¹ at 70 W kg ⁻¹ 5 Wh kg ⁻¹ at 16528 W kg ⁻¹	~80% after 1000 cycles at 1A g ⁻¹	6
MnO/C//CNS (Li ⁺)	1-4 V	100 Wh kg ⁻¹ at 83 W kg ⁻¹ 30 Wh kg ⁻¹ at 20000 W kg ⁻¹	70% after 5000 cycles at 5A g^{-1}	7
MnO-C//AC (Li ⁺)	0-4 V	227 Wh kg ⁻¹ at ~60 W kg ⁻¹ ~20 Wh kg ⁻¹ at 2952 W kg ⁻¹	92.5% after 3500 cycles at 4 A g^{-1}	8
TiO ₂ //CNT-AC (Li ⁺)	1-3 V	59.6 Wh kg ⁻¹ at 120 W kg ⁻¹ 31.2 Wh kg ⁻¹ at 7000 W kg ⁻¹	_	9

 Table S1 Comparison with the performance of previously reported Li-ion capacitors.

References

- 1 X.L. Wang, G. Li, Z. Chen, V. Augustyn, G.Wang, B. Dunn, X. M. Ma, *Adv.Energy Mater.*, 2016, **1**, 1089-1093.
- 2 B. H. Deng, T. Y. Lei, W. H. Zhu, L. Xiao, and J. P. Liu, Adv. Funct. Mater., 28, 1704330.
- 3 X. Wang, G. Li, R. Tjandra, X. Fan X. Xiao, A. Yu Fast, *RSC Adv.*, 2015, 5, 41179-41185.
- 4 L. Kong, C. Zhang, S. Zhang, J. Wang R. Cai, C. Lv, W. Qiao, L. Ling, D. Long, J. Mater. Chem. A, 2014, 2, 17962-17970.
- 5 E. Lim, H. Kim, C. Jo, J. Chun, K. Ku, S. Kim, H.I. Lee, I.S. Nam, S. Yoon, K. Kang, J. Lee, ACS Nano, 2014, 8, 8968-8978.
- E. Lim, C. Jo, H. Kim, M.H. Kim, Y. Mun, J. Chun, Y. Ye, J. Hwang, K.S. Ha,
 K.C. Roh, K. Kang, S. Yun, J. Lee, ACS Nano, 2015, 9, 7497-7505.
- 7 H. Kim, K.Y. Park, M.Y. Cho, M.H. Kim, J. Hong, S.K. Jung, K.C. Roh, K. Kang, *ChemElectroChem*, 2014, 1, 125-130.
- 8 Y.M. Zhao, Y.P. Cui, J. Shi, W. Liu, H. L. Wang, J. Mater. Chem. A, 2017, 5, 15243-15252.
- 9 C. Liu, C. Zhang, H. Song, C. Zhang, Y. Liu, X. Nan, G. Cao, *Nano Energy*, 2016, **22**, 290-300.