Supplementary Information

Preparation of Bifunctional Ultrathin Nickel Phosphide Nanosheet Electrocatalyst for Full Water Splitting

Nouraiz Mushtaq^a, Chen Qiao^a, Hassina Tabassum^b, Muhammad Naveed^a, Muhammad Tahir^a, Youqi Zhu^a, Muhammad Naeem^a, Waqar Younas^a, Chuanbao Cao^a*

^aResearch Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China.

^bCollege of Engineering, Peking University, Beijing 100871, China.

*Corresponding author E-mail: cbcao@bit.edu.cn

Experimental Section

All chemicals are used without any further purification.

Synthesis of Ni(OH)₂ Nanosheet Precursor

Ni(OH)₂ ultrathin freestanding nanosheets had grown by a facetious microwave-assisted technique conferring our past study¹. In a distinctive process, 15 mmol of Ni(NO₃)₂.6H₂O and 60 mmol urea (CH₄N₂O) had beenliquefied in 240 mL synthesis solvent of DI water (deionized water) and E.G (ethyleneglycol) with volume ratio 1:7 for 0.5 h to form a rich olive green uniform solution. The solution was formerly poured into a 1000 mL three-neck flask and put in the microwave treatment in a SINEOMAS-II+ microwave reactor at 700 W for 30 minutes in continuous stirring. Lastly, a fluffy olive green colloid precipitous had acquired, cooled it at room temperature recovered through centrifugation and wash away various times by DI water and ethanol.

Synthesis of Nickel Phosphide Ni₂P Ultrathin Freestanding Nanosheets

Ni₂P were prepared through chemical vapor deposition (CVD) method by using above fabricated nickel hydroxide Ni(OH)₂ and sodium hypophosphite (NaH₂PO₂) with a molar ratio (1:5). In a

typical preparation of Ni₂P, both reactants were placed in a reactant tube in two different boats for 25 minutes and removed other gases with Ar flow. Then the precursors were heated at a temperature of 350°C through a temperature ramp of 1 °C/min and sustained on the final temperature for 180 min under Ar flow. Later cooled at room temperature and collected the black product.

Material Characterization

X-ray diffractometry (PANalytical XRD, with Cu Ka radiation) was used for the investigation of crystallographic phase. Microstructures and morphology of samples were observed via field emission scanning electron microscopy (FESEM, JEOL JEM-2100 F) fortified with energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM, JSM- 2100F, 200 kV), and high-resolution TEM (HRTEM, FEI Tecnai G2 F20, 200 kV). Using Veeco instrument atomic force microscopy (AFM) had been performed. Brunauer-Emmett-Teller surface areas (BET) was used for investigation of the specific surface area. PHI Quanteral II (Japan) with an Al K= 280.00 eV excitation source was used for the measurements of X-ray photoelectron spectroscopy (XPS).

Electrochemical Measurements

Electrochemical work station (CHI-660E) was used for all HER and OER in a three electrode system. Two electrode systems are used for overall water splitting, and saturated calomel (SCE) and Pt foil were taken as counter and reference electrodes for electrochemical measurements. Now a distinctive making of working electrode, a glassy carbon electrode (GCE) was used, 14 mg of Ni₂P was uniformly dissolved in water/ethanol solution (1/0.880 ml) and put it on sonication for 30 minutes, 940 μ l of the stock solution and 60 μ l of Nafion solution (Sigma Aldrich, 5wt%) were homogeneously mixed and sonicated for 30 min. Then, catalytic electrodes were fabricated by

wise dropped 5 µl of the slurry on glassy carbon electrode (GCE) and dried it at room temperature.

Reversible Hydrogen Electrode used as a standard for all potentials as follows:

$$E(RHE) = E(SCE) + 0.059 \text{ pH} + Eo$$

Overall water electrolyzer has been prepared with 7 μ l of the ink was loaded on 0.05 cm × 1 cm active area of carbon fiber paper electrode, before testing dried it at room temperature.

Figure S1. XRD pattern of Ni (OH)₂

Figure S2. (a&b) SEM images of Ni (OH)₂

Figure S3. (a) Nyquist Plots of RuO₂ and Ni₂P, (b) Nyquist plots of Ni₂P and Pt/C

Figure S4. (a, b) Ni₂P CV curves at different scan rates for OER and HER

Figure S5. (a) OER polarization curves of Ni (OH)₂ and Ni₂P, (b) HER polarization curves of Ni(OH)₂ and Ni₂P

Figure S6. Proposed surface mechanism for OER process on Ni₂P nanosheets.

Figure S7. Production of H₂&O₂

Above graph is generated through following calculations.

C= I*t (C= number of coulombs, I= current in amperes and t= time in seconds)

Charge of electron= $1.60*10^{-19}$ coulombs

1 mole of electrons contain= $6.02*10^{23}$ Avogadro's number

1 mole of electrons carry= $1.60*10^{-19}*6.02*10^{23}=96485$

F=96485

Now we have

I= 0.01 A & t= 3600 s

Now considering the H₂ producing equation

1 mol of H₂ requires 2 mol of electrons so

Amount of H₂ produced= $3600*0.01/(2*96485) = 186.55 \mu$ mol

Use this equation for different time period and get all calculations.

Catalyst	Morphology	Electrolyte	Over potential (η10)(mV)	Tafel Slope (mV dec ⁻¹)	Ref.
Ni ₂ P	Freestanding Porous nanosheets	1М КОН	96	94	This work
Ni ₅ P ₄ /C	Nanocrystals	$0.5M H_2SO_4$	103	51	2
Ni ₁₂ P ₅ /C			182	63	
Ni ₂ P/C			135	62	
Ni _x P/NF	Nanospheres	1М КОН	63	55	3
Ni-Ni _x P/CC	Nanospheres	$0.5M H_2SO_4$	164	76	4
Ni ₂ P	Nanoparticles	$0.5M H_2SO_4$	102	46	5
CoS _x	Freestanding sheets	1М КОН	127	123	6
Ni ₃ S ₂	Nanosheet/NF	1М КОН	223	-	7
Ni ₃ S ₂	Nanoparticles/CNTs	1М КОН	480	102	8
Ni _{0.33} Co _{0.67} S ₂ /Ti	Nanowires	1M KOH	88	118	9

and other reported non-precious HER electrocatalysts.

Table S1. Comparison of the HER performances of Ni₂P with the best-reported nickel phosphide

foil					
NiSe ₂	Nanosheets	1М КОН	184	184	10
Co ₉ S ₈ @MoS ₂	Octahedrons/CNFs	1М КОН	190	110	11
СоР	Nanowires/CC	1М КОН	110	129	12
СоР	Film	1М КОН	94	42	13
CoN _x /C	NPs/Porous carbon	1М КОН	170	75	14
MoS ₂ -Ni ₃ S ₂	Nanorods/NF	1М КОН	98	61	15
NiP	Nanoplates	1М КОН	160 (20 mA	107	16
			cm ⁻²)		
NiMnCoS@rGO	Nanoparticles@sheets	1М КОН	150	52	17
Co@N-C	Nanoparticles	1М КОН	210	108	18
Co-Ni@NC	Nanospheres	1М КОН	180	193	19
CoO _x @CN	Nanoparticles@sheets	1М КОН	232	115	20
CoPs	Nanoplates/CFP	$0.5M H_2SO_4$	48	56	21
MoS ₂ /CoSe ₂	Nanosheets/nanobelts	$0.5M H_2SO_4$	68	39	22
MoS ₂	Film	$0.5M H_2SO_4$	260	50	23
WS ₂	Nanosheets	$0.5M H_2SO_4$	250	60	24
Ni-CoSe ₂	Se ₂ NPs-nanobelts		90	39	25
MoS ₂ @rGO@Mo	Nanosheet	1 М КОН	123	62	26
CoO/MoO _x	Nanorods	1 М КОН	40	44	27
Ni/NiO	Nanosheet		110	43	28
FeP	Nanoparticles	0.5M H ₂ SO ₄	147	65	29
FeNi ₃ /FeNiO _x	Nanosheet	1 M KOH	170		30
NiCo/NiCoO _x	nanowire	1 М КОН	155	80	31
Co _x P	Nanoparticles	0.5M H ₂ SO ₄	110	58	32
Co _x P	Nanocatalyst	0.5M H ₂ SO ₄	144	58	33
MnMoO ₄	nMoO ₄ Nanosheet		179	56	34
Co/Co ₃ O ₄ Nanosheet		1 М КОН	90	44	35

Table S2. Comparison of the OER performances of Ni₂P with the best-reported nickel phosphide

Catalyst	Morphology	Electrolyte	Over	TafelSlope	Ref.
			potential	(mV dec ⁻¹)	
			(η10) mV		
Ni ₂ P	Freestanding porous	1М КОН	255	57	This
	nanosheets				work
Ni ₂ P ₄ O ₁₂	Nanocrystals	1M KOH	270	-	
NiP	Hollow dendritic	1M KOh	303 920	67.3	36
	arcitucture		(20 mA		
			cm ⁻²)		
NiO@NiP	Nanosheet	1M KOH	292	123	37
СоР	Film	1M KOH	345	47	38
Fe doped Ni ₂ P	Nanosheet	1M KOH	257	96	39
CuCo ₂ S ₄	Nanosheet	1M KOH	310	86	40
C@CoP ₂	Nanostructure coreshell	1M KOH	234	63.8	4
CoS	Nanosheet	1M KOH	312	-	41
Co ₉ S ₈	Nanosheets	1M KOH	288	79	42
CuCo ₂ S ₄	Nanosheets	1M KOH	310	86	38
Zn _{0.76} Co _{0.24} S/CoS ₂	Nanowires	1М КОН	>316	79	41
$C_{0}S_{0}@M_{0}S_{2}$	Octahedrons/CNFs	1М КОН	430	61	9
			150	01	
NiFeLDH	Nanoplates	1M KOH	302	40	42
CoMnLDH	Nanoplates	1M KOH	324	43	43
Co ₅ MnLDH/MWCNT	Nanosheets/MWCNT	1М КОН	300	73.6	44
NiMnCoS@rGO	Nanoparticles@sheets	1М КОН	249	66	15
(Ni,Co) _{0.85} Se@CC	Nanotubes@CC	1М КОН	255	79	45
CoCrLDH	Nanosheet	1М КОН	340	81	46

and other reported non-precious OER electrocatalysts.

Ni (OH) ₂	Nanosheet/NF	1М КОН	170	150	47
$Zn_{4-x}Co_xSO_4$ (OH) ₆ .0.5	Nanoplates	0.5M KOH	370	60	48
H ₂ O					
NiP	Nanoplates	1М КОН	320	72.2	14
NiMnCoS@rGO	Nanoparticles@sheets	1M KOH	320	53	15

Table S3. Comparison of overall water splitting performances of $Ni_2P||Ni_2P$ with the best

Cathode	Anode	Electrolyte	HER Over	OER Over	E at j= 10	Ref
catalyst	catalyst		potential	potential	mA cm ⁻² (V)	
			(η10) mV	(η10) mV		
Ni ₂ P	Ni ₂ P	1М КОН	96	255	1.47	This work
CoS _x	Co ₉ S ₈	1M KOH	127	288	1.55 (20 mA	7
					cm ⁻²)	
Ni _x P _y	Ni _x P _y	1M KOH	160 (20 mA	370	1.57	48
			cm ⁻²)			
NiS	Ni ₂ P	1M KOH	126	265 (20 mA	1.67	14
				cm ⁻²)		
Ni(OH) ₂ /N	Ni(OH) ₂ /NF	1M KOH	178 (20 mA	330 (50 mA	1.68	47
F			cm ⁻²)	cm ⁻²)		
NiS/NF	Ni/NF	1M KOH	158 (20 mA	355 (50 mA	1.67	49
			cm ⁻²)	cm ⁻²)		
Ni ₂ P/Ni/F	Ni ₂ P/Ni/NF	1M KOH	90	200	1.49	50
NiMnCoS	NiMnCoS@r	1M KOH	150	320	1.56 (20 mA	51
@rGO	GO				cm ⁻²)	
Co-	Co-S/CTs/CP	1M KOH	190	307	1.74	52
S/CTs/CP						

reported bi-functional electrocatalysts in the basic electrolyte.

Reference:

- 1. Y. Zhu, C. Cao, S. Tao, W. Chu, Z. Wu and Y. Li, *Scientific reports*, 2014, 4, 5787.
- 2. X. Li, J. Rong and B. Wei, *ACS nano*, 2010, **4**, 6039-6049.
- 3. Q. Ren, H. Jin, X. Xu, A. Liu, J. Li, J. Wang and S. Wang, *Electrochimica Acta*, 2019, **298**, 229-236.
- 4. C. Zhang, B. Xin, Z. Xi, B. Zhang, Z. Li, H. Zhang, Z. Li and J. Hao, ACS Sustainable Chemistry & Engineering, 2017, 6, 1468-1477.
- 5. L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, *Journal of the American Chemical Society*, 2015, **137**, 14023-14026.
- 6. T.-W. Lin, C.-J. Liu and C.-S. Dai, *Applied Catalysis B: Environmental*, 2014, **154**, 213-220.
- 7. Z. Peng, D. Jia, A. M. Al Enizi, A. A. Elzatahry and G. Zheng, *Advanced Energy Materials*, 2015, **5**, 1402031.
- 8. H. Liang, L. Li, F. Meng, L. Dang, J. Zhuo, A. Forticaux, Z. Wang and S. Jin, *Chemistry of Materials*, 2015, **27**, 5702-5711.
- 9. H. Zhu, J. Zhang, R. Yanzhang, M. Du, Q. Wang, G. Gao, J. Wu, G. Wu, M. Zhang and B. Liu, *Advanced Materials*, 2015, **27**, 4752-4759.
- 10. J. Tian, Q. Liu, A. M. Asiri and X. Sun, *Journal of the American Chemical Society*, 2014, **136**, 7587-7590.
- 11. N. Jiang, B. You, M. Sheng and Y. Sun, *Angewandte Chemie International Edition*, 2015, **54**, 6251-6254.
- 12. H.-W. Liang, S. Brüller, R. Dong, J. Zhang, X. Feng and K. Müllen, *Nature communications*, 2015, **6**, 7992.
- 13. Y. Yang, K. Zhang, H. Lin, X. Li, H. C. Chan, L. Yang and Q. Gao, Acs Catalysis, 2017, 7, 2357-2366.
- 14. J. Li, J. Li, X. Zhou, Z. Xia, W. Gao, Y. Ma and Y. Qu, *ACS applied materials & interfaces*, 2016, **8**, 10826-10834.
- 15. R. Miao, J. He, S. Sahoo, Z. Luo, W. Zhong, S.-Y. Chen, C. Guild, T. Jafari, B. Dutta and S. A. Cetegen, ACS Catalysis, 2016, **7**, 819-832.
- 16. J. Wang, D. Gao, G. Wang, S. Miao, H. Wu, J. Li and X. Bao, *Journal of Materials Chemistry A*, 2014, **2**, 20067-20074.
- 17. J. Deng, P. Ren, D. Deng and X. Bao, *Angewandte Chemie International Edition*, 2015, **54**, 2100-2104.
- H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang and Y. Wang, *Journal of the American Chemical Society*, 2015, 137, 2688-2694.
- 19. M. Cabán-Acevedo, M. L. Stone, J. Schmidt, J. G. Thomas, Q. Ding, H.-C. Chang, M.-L. Tsai, J.-H. He and S. Jin, *Nature materials*, 2015, **14**, 1245.
- 20. M.-R. Gao, J.-X. Liang, Y.-R. Zheng, Y.-F. Xu, J. Jiang, Q. Gao, J. Li and S.-H. Yu, *Nature communications*, 2015, **6**, 5982.
- 21. J. Kibsgaard, Z. Chen, B. N. Reinecke and T. F. Jaramillo, *Nature materials*, 2012, **11**, 963.
- 22. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy and G. Eda, *Nature materials*, 2013, **12**, 850.
- 23. Y. F. Xu, M. R. Gao, Y. R. Zheng, J. Jiang and S. H. Yu, *Angewandte Chemie International Edition*, 2013, **52**, 8546-8550.
- 24. J. Huang, Y. Sun, Y. Zhang, G. Zou, C. Yan, S. Cong, T. Lei, X. Dai, J. Guo and R. Lu, *Advanced Materials*, 2018, **30**, 1705045.
- 25. X. Guo, Y. Qian, W. Zhang, C. Qian, F. Xu, S. Qian, H. Yang, A. Yuan and T. Fan, *Journal of Alloys and Compounds*, 2018, **765**, 835-840.

- 26. B. He, L. Chen, M. Jing, M. Zhou, Z. Hou and X. Chen, *Electrochimica Acta*, 2018, **283**, 357-365.
- 27. X. Yan, L. Tian, S. Atkins, Y. Liu, J. Murowchick and X. Chen, ACS Sustainable Chemistry & Engineering, 2016, **4**, 3743-3749.
- 28. X. Yan, L. Tian and X. Chen, *Journal of Power Sources*, 2015, **300**, 336-343.
- 29. L. Tian, X. Yan and X. Chen, ACS Catalysis, 2016, 6, 5441-5448.
- 30. X. Yan, L. Tian, K. Li, S. Atkins, H. Zhao, J. Murowchick, L. Liu and X. Chen, *Advanced Materials Interfaces*, 2016, **3**, 1600368.
- 31. X. Yan, K. Li, L. Lyu, F. Song, J. He, D. Niu, L. Liu, X. Hu and X. Chen, ACS applied materials & interfaces, 2016, 8, 3208-3214.
- 32. L. Tian, J. Murowchick and X. Chen, *Sustainable Energy & Fuels*, 2017, **1**, 62-68.
- 33. L. Tian, X. Yan, X. Chen, L. Liu and X. Chen, *Journal of Materials Chemistry A*, 2016, 4, 13011-13016.
- 34. X. Yan, L. Tian, J. Murowchick and X. Chen, *Journal of Materials Chemistry A*, 2016, **4**, 3683-3688.
- 35. X. Yan, L. Tian, M. He and X. Chen, *Nano letters*, 2015, **15**, 6015-6021.
- 36. S. Hao, N. Chen, Q. Liu, Y. Xie, H. Fu and Y. Yang, *Chemistry–An Asian Journal*, 2018, **13**, 944-949.
- J. Chen, Y. Li, G. Sheng, L. Xu, H. Ye, X. Z. Fu, R. Sun and C. P. Wong, *ChemCatChem*, 2018, **10**, 2248-2253.
- 38. M. Chauhan, K. P. Reddy, C. S. Gopinath and S. Deka, *ACS Catalysis*, 2017, **7**, 5871-5879.
- 39. M. M. Alsabban, X. Yang, W. Wahyudi, J.-H. Fu, M. N. Hedhili, J. Ming, C.-W. Yang, M. A. Nadeem, H. Idriss and Z. Lai, *ACS applied materials & interfaces*, 2019.
- 40. S. Ju, Y. Liu, H. Chen, F. Tan, A. Yuan, X. Li and G.-X. Zhu, ACS Applied Energy Materials, 2019.
- 41. Y. Liang, Q. Liu, Y. Luo, X. Sun, Y. He and A. M. Asiri, *Electrochimica Acta*, 2016, **190**, 360-364.
- 42. F. Song and X. Hu, *Nature communications*, 2014, **5**, 4477.
- 43. F. Song and X. Hu, *Journal of the American Chemical Society*, 2014, **136**, 16481-16484.
- 44. G. Jia, Y. Hu, Q. Qian, Y. Yao, S. Zhang, Z. Li and Z. Zou, *ACS applied materials & interfaces*, 2016, **8**, 14527-14534.
- 45. C. Xia, Q. Jiang, C. Zhao, M. N. Hedhili and H. N. Alshareef, *Advanced Materials*, 2016, **28**, 77-85.
- 46. C. Dong, X. Yuan, X. Wang, X. Liu, W. Dong, R. Wang, Y. Duan and F. Huang, *Journal of Materials Chemistry A*, 2016, **4**, 11292-11298.
- 47. Y. Rao, Y. Wang, H. Ning, P. Li and M. Wu, ACS applied materials & interfaces, 2016, **8**, 33601-33607.
- 48. S. Dutta, C. Ray, Y. Negishi and T. Pal, ACS applied materials & interfaces, 2017, 9, 8134-8141.
- 49. X. Xiao, D. Huang, Y. Fu, M. Wen, X. Jiang, X. Lv, M. Li, L. Gao, S. Liu and M. Wang, ACS applied materials & interfaces, 2018, **10**, 4689-4696.
- 50. W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang and J. Wang, *Chemical Communications*, 2016, **52**, 1486-1489.
- 51. J. Wang, W. Cui, Q. Liu, Z. Xing, A. M. Asiri and X. Sun, *Advanced materials*, 2016, **28**, 215-230.
- 52. B. You, N. Jiang, M. Sheng, M. W. Bhushan and Y. Sun, Acs Catalysis, 2015, 6, 714-721.