Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020

Supporting information

for

Synergetic FeCo nanorods embedded in nitrogen doped carbon nanotubes with abundant metal-NCNT heterointerfaces as efficient air electrocatalyst for rechargeable zinc-air batteries

Hao Hu^{a#}, Yuhua Xie^{a#}, Farhad MD Kazim^a, Konggang Qu^b, Min Li^a, Zhikun

Xu^{c,d*} and Zehui Yang^{a*}

^aSustainable Energy Laboratory, Faculty of Materials Science and Chemistry,

China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, China

^bShandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng, 252059, China

^cKey Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China.

^dCollege of Science, Guangdong University of Petrochemical Technology,, Maoming, 525000, China.

H. Hu and Y. Xie equally contributed to this work.

Electrocatalyst	pyridinic N	pyrollic N	graphitic N	oxidized N
Fe-NR/NCNT	30.72	21.60	29.76	17.92
Co-NR/NCNT	28.31	21.51	29.02	21.16
Fe _{0.67} Co _{0.33} -NR/NCNT	30.33	22.24	28.08	19.35
Fe _{0.5} Co _{0.5} -NR/NCNT	31.72	22.15	31.61	18.52
Fe _{0.33} Co _{0.67} -NR/NCNT	34.49	23.57	30.38	11.56

 Table S1 Quantitative analysis of N1s peaks of various electrocatalysts.

Table S2 Quantitative analysis of Fe2p and Co2p peaks of various

electrocatalysts.

Electrocatalyst	Fe⁰:Fe ^{x+}	Co ⁰ :Co ^{x+}
Fe-NR/NCNT	1.98:1	-
Co-NR/NCNT	-	4.17:1
Fe _{0.67} Co _{0.33} -NR/NCNT	1.76:1	1.92:1
Fe _{0.5} Co _{0.5} -NR/NCNT	1.79:1	1.90:1
Fe _{0.33} Co _{0.67} -NR/NCNT	1.82:1	1.83:1

Table S3 Comparison of power densities of rechargeable zinc-air batteriesbased on Fe/Co electrocatalysts.

Electrocatalyst	Power density (mW cm ⁻²)	Ref.
Fe _{0.5} Co _{0.5} -NR/NCNT	164	This work
FeCo-Nx-CN	150	1
CoFe@NCNTs	150	2
Co ₂ FeO ₄ /NCNTs	90.68	3
CoFe/N-GCT	203	4
FeNi@N-CNT/NCSs	103	5
D-BNGFe	142	6
Mn/Co-N-C	136	7
CoFe/Co@NCNT/NG	161	8
Co-N-C nanosheet	132	9

Figure S1 SEM images of Fe_{0.67}Co_{0.33}-NR/NCNT (a) and Fe_{0.5}Co_{0.5}-NR/NCNT

(b) electrocatalysts.

Figure S2 Cyclic voltammetry curves of Fe-NR/NCNT (a), Co-NR/NCNT (b),

 $Fe_{0.33}Co_{0.67}$ -NR/NCNT (c), $Fe_{0.5}Co_{0.5}$ -NR/NCNT (d) and $Fe_{0.67}Co_{0.33}$ -NR/NCNT (e) electrocatalysts. (f) ECSAs of Fe-NR/NCNT, Co-NR/NCNT, $Fe_{0.67}Co_{0.33}$ -NR/NCNT, $Fe_{0.5}Co_{0.5}$ -NR/NCNT and $Fe_{0.33}Co_{0.67}$ -NR/NCNT electrocatalysts.

Fe0.33Co0.67-NR/NCNT electrocatalysts.

Figure S4 OER performance (a), cyclic voltammetry curve (b), ECSA (c) and electrochemical impedance spectroscopies (d) of Fe-NR/NCNT before and after 1000 potential cycles.

Figure S5 OER performance (a), cyclic voltammetry curve (b), ECSA (c) and electrochemical impedance spectroscopies (d) of Co-NR/NCNT before and after 1000 potential cycles.

Figure S6 Cyclic voltammetry curve (a), ECSA (b) and electrochemical impedance spectroscopies (c) of $Fe_{0.33}Co_{0.67}$ -NR/NCNT before and after 1000 potential cycles.

Figure S7 OER performance (a), cyclic voltammetry curve (b), ECSA (c) and electrochemical impedance spectroscopies (d) of Fe_{0.33}Co_{0.67}-NR/NCNT before and after 1000 potential cycles.

Figure S8 OER performance (a), cyclic voltammetry curves (b, c) and ECSAs (d) of commercial IrO_2 before and after 1000 potential cycles.

Figure S9 OER performance (a), cyclic voltammetry curve (b), ECSA (c) and electrochemical impedance spectroscopies (d) of $Fe_{0.5}Co_{0.5}$ -NR/NCNT before and after 1000 potential cycles.

Figure S10 OER performance (a), cyclic voltammetry curve (b), ECSA (c) and electrochemical impedance spectroscopies (d) of Fe_{0.67}Co_{0.33}-NR/NCNT before and after 1000 potential cycles.

Figure S11 LSV curves of $Fe_{0.33}Co_{0.67}$ -NR/NCNT (a) and commercial Pt/C (b) electrocatalysts with various scan speeds. (c) Number of transferred electrons at various potentials for commercial Pt/C electrocatalyst.

Figure S12 (a) LSV curves of $Fe_{0.33}Co_{0.67}$ -NR/NCNT electrocatalyst with various scan speeds after 1000 potential cycles. (b) Number of transferred electrons at various potentials for $Fe_{0.33}Co_{0.67}$ -NR/NCNT electrocatalyst.

electrocatalysts before and after 1000 potential cycles.

Figure S14 (a) I-V and power density polarization curves of various electrocatalysts. (b) Charge-discharge polarization curves of Fe-NR/NCNT (b), Co-NR/NCNT (c), Fe_{0.5}Co_{0.5}-NR/NCNT (d) and Fe_{0.67}Co_{0.33}-NR/NCNT (e) electrocatalyst.

References

- 1. S. Li, C. Cheng, X. Zhao, J. Schmidt and A. Thomas, *Angew. Chem. Int. Ed.*, 2018, **57**, 1856-1862.
- 2. P. Cai, Y. Hong, S. Ci and Z. Wen, *Nanoscale*, 2016, **8**, 20048-20055.
- X.-T. Wang, T. Ouyang, L. Wang, J.-H. Zhong, T. Ma and Z.-Q. Liu, *Angew. Chem. Int. Ed.*, 2019, 58, 13291-13296.
- 4. X. Liu, L. Wang, P. Yu, C. Tian, F. Sun, J. Ma, W. Li and H. Fu, *Angew. Chem. Int. Ed.*, 2018, **57**, 16166-16170.
- 5. J.-T. Ren, L. Chen, Y.-S. Wang, W.-W. Tian, L.-J. Gao and Z.-Y. Yuan, *ACS Sustain. Chem. Eng.*, 2020, **8**, 223-237.
- 6. G. Zhang, X. Liu, L. Wang, F. Sun, Y. Yang, C. Tian, P. Yu, Q. Pan and H. Fu, *ACS Sustain. Chem. Eng.*, 2019, **7**, 19104-19112.
- 7. L. Wei, L. Qiu, Y. Liu, J. Zhang, D. Yuan and L. Wang, *ACS Sustain. Chem. Eng.*, 2019, **7**, 14180-14188.
- 8. P. Zhu, J. Gao and S. Liu, *J. Power Sources*, 2020, **449**, 227512.
- P. Yu, L. Wang, F. Sun, Y. Xie, X. Liu, J. Ma, X. Wang, C. Tian, J. Li and H. Fu, *Adv. Mater.*, 2019, 31, 1901666.