Electronic Supporting Information

CO₂ electroreduction to fuels on mesoporous carbon-embedded copper nanoparticles

Nihat Sahin,^{a,b} Wanderson O. Silva,^b Mariana R. Camilo,^b Edson A. Ticianelli,^b Fabio H. B. Lima,^b Julien Parmentier,^c Clément Comminges,^a Teko W. Napporn,^a and Kouakou B. Kokoh^{a,*}

Figure S1. XRD patterns of the Cu/C ex-Tannin material recorded after the thermogravimetric analysis measurement under air atmosphere.

Figure S2. Transmission electron microcopy (TEM) images of the metal-free mesoporous carbon materials at different carbonization temperatures (a, b at 400 °C) and (c, d at 900 °C) under Ar for 18 min.

Figure S3. The cross-section TEM (CS-TEM) micrographs of Cu/Tannin (a) bright field, (b) dark field CS-TEM micrographs, and the inset image (c) the inset image the selected area electron diffraction (SAED) pattern as regards the dark field plane of Cu₂O (111) at zone axis [011]. The *d*-spacing spots indexed as 1, 2 and 3 are determined as 0.221, 0.254 and 0.256 nm, respectively.

Figure S4. Cyclic voltammograms of metal-free mesoporous carbon material recorded at 50 mV s⁻¹ scan rate in 0.4 mol L⁻¹ KHCO₃ with 4.0 mM KCl.

Figure S5. Chronoamperometry curves of Cu/C ex-Tannin catalyst at various electrode potentials in CO_2 -saturated 0.4 mol L⁻¹ KHCO₃ electrolyte containing 4.0 mM KCl.

Figure S6. On-line DEMS measurements of chronoamperometry curves of Cu/C ex-Tannin catalyst at various electrode potentials in CO_2 -saturated 0.4 mol L⁻¹ KHCO₃ electrolyte containing 4.0 mM KCl.

Figure S7. Schematic illustration of the one-pot soft templating Evaporation-Induced Self-Assembly (EISA) route for mesoporous carbon-embedded nanostructured copper material synthesis.

Electrode	Current density	Coulombic	Faradaic Efficiency (F.E %)		
potential	j (mA cm ⁻²)	Charge	нсоон	со	H ₂
E (V vs. RHE)		(C)			
-0.32 V	3.9	55.2	11.6	4.0	45.8
-0.42 V	5.7	61.9	16.5	5.4	55.1
-0.52 V	9.9	75.5	24.8	9.7	45.8
-0.62 V	10.4	62.2	31.2	5.6	47.2
-0.67 V	11.9	72.3	17.5	5.2	48.5
-0.72 V	13.0	76.0	25.4	4.7	56.2
-0.82 V	17.7	90.5	19.4	3.7	56.4
-0.92 V	19.8	79.0	28.1	4.4	52.1
-1.12 V	28.4	96.4	18.4	1.5	77.1

Table S1. Data obtained from the fixed-potential electrolysis, *in-situ* μ -GC and HPLC analyses of CO₂ reduction using nanostructured Cu/C ex-Tannin porous electrodes.