Supporting Information

Lithiated carbon cloth as dendrite-free anode for high-

performance lithium battery

Hao Cheng,^{‡a} Shiyun Zhang,^{‡a} Jian Mei,^b Lvchao Qiu,^b Peng Zhang,^c Xiongwen Xu,^d Jian Tu,^d

Jian Xie*ae and Xinbing Zhaoae

Fig. S1. SEM image of a single carbon fiber in carbon cloth.

^dLI-FUN Technology Co., Ltd., Zhuzhou 412000, P. R. China

^aState Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China. E-mail: xiejian1977@zju.edu.cn; Fax: +86-571-87951451; Tel: +86-571-87951451

^bState Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, P. R. China

^eHangzhou Skyrich Power Co., Ltd., Hangzhou 310022, P. R. China

^e*Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou 310027, P. R. China* ‡Hao Cheng and Shiyun Zhang contributed equally to this work.

Fig. S2. Cross-section SEM image of the LCC electrodes.

Fig. S3. Equivalent circuit for the fitting of the electrochemical impedance, where R_e represents ohm resistance of cell components, R_f and Q_1 correspond to the surface film resistance and relaxation capacitance, R_{ct} and Q_2 correspond to the charge transfer resistance and double-layer capacitance, and Z_w is related to the bulk diffusion of Li ions.

Sample	$R_{\rm e}(\Omega)$	$R_{\rm f}(\Omega)$	$R_{\rm ct}\left(\Omega\right)$
LCC, 0 h	9.7	134.6	121.0
LCC, 50 h	3.5	370.6	259.1
LCC, 100 h	3.0	352.1	325.2
LCC, 1st cycle	12.2	38.5	7.3
LCC, 100th cycle	6.5	87.0	8.6
Li, 0 h	3.0	198.1	104.6
Li, 50 h	3.2	395.4	179.3
Li, 100 h	5.5	554.7	335.8
Li, 1st cycle	3.5	82.6	23.8
Li, 100th cycle	4.9	169.4	37.2

Table S1 Fitting results of the Nyquist plots in Fig. 2 using the equivalent circuitin Fig. S3.

Sample	Mass fraction of Li	References
CF/Ag-Li	40.7%	1
Li-CF	37%	2
Graphene-Li	67.9%	3
LCC	61%	This work

Table S2 Comparison of load mass fraction of Li in different carbon-based Li composite anodes.

Fig. S4. Galvanostatic discharge/charge profiles of Li and LCC electrodes in symmetric cells at 5 mA cm⁻² with a capacity of 1 mAh cm⁻².

Fig. S5. Galvanostatic discharge/charge profiles of Li and LCC electrodes in symmetric cells at 1 mA cm⁻² with a capacity of 5 mAh cm⁻².

Sample	Current density (mA cm ⁻²)	Capacity (mAh cm ⁻²)	Cycling time (h)	References
CF/Ag-Li	1	1	400	1
Li-CF	3	1	120	2
Graphene-Li	1	1	330	3
rGO-Li	1	1	500	4
	3	1	70	
Li-CNTs	3	1	100	5
LiCNE	1	1	200	6
Li-CMN	1	1	500	7
LCC	1	1	700	This work
	3	1	300	

 Table S3 Performance comparison of different 3-D carbon hosts for Li metal anodes.

Fig. S6. Coulombic efficiency comparison of the Li/Cu cell and Li/carbon cloth cell.

Fig. S7. Raman spectra of the pristine carbon cloth and the carbon cloth after 100 cycles.

Fig. S8. Cycling performance the Li– O_2 cells using Li or LCC anodes at 400 mA g⁻¹ with a limited capacity of 1000 mAh g⁻¹.

Fig. S9. Galvanostatic discharge/charge profiles of Li and LCC electrodes in symmetric cells with 1 M LiClO₄/TEGDME electrolyte tested in O_2 atmosphere at 1 mA cm⁻² with a capacity of 1 mAh cm⁻².

References

- R. Zhang, X. Chen, X. Shen, X. Q. Zhang, X. R. Chen, X. B. Cheng, C. Yan, C. Z. Zhao and Q. Zhang, *Joule*, 2018, 2, 764–777.
- 2 Y. Zhang, C. W. Wang, G. Pastel, Y. D. Kuang, H. Xie, Y. J. Li, B. Y. Liu, W. Luo, C. J. Chen and L. B. Hu, *Adv. Energy Mater.*, 2018, 8, 1800635.
- 3 G. Huang, J. H. Han, F. Zhang, Z. Q. Wang, H. Kashani, K. Watanabe and M. W. Chen, *Adv. Mater.*, 2018, **31**, 1805334.
- 4 D. C. Lin, Y. Y. Liu, Z. Liang, H. W. Lee, J. Sun, H. T. Wang, K. Yan, J. Xie and Y. Cui, *Nat. Nanotechnol.*, 2016, **11**, 626–632.
- 5 J. L. Lang, Y. Jin, X. Y. Luo, Z. L. Liu, J. N. Song, Y. Z. Long, L. H. Qi, M. H. Fang, Z. C. Li and H. Wu, J. Mater. Chem. A, 2017, 5, 19168–19174.
- 6 D. C. Lin, J. Zhao, J. Sun, H. B. Yao, Y. Y. Liu, K. Yan and Y. Cui, PNAS, 2017, 114, 4613–4618.
- 7 H. Ye, S. Xin, Y. X. Yin, J. Y. Li, Y. G. Guo and L. J. Wan, J. Am. Chem. Soc., 2017, 139, 5916–5922.

Information for videos

Video S1 Fabrication process of the LCC electrode.

Video S2 Dynamic changes of the Li electrode at 1 mA cm⁻² at 100 times speed.

Video S3 Dynamic changes of the LCC electrode at 1 mA cm⁻² at 100 times speed.