Supporting Information

A facile electrochemical strategy for engineering the sulfur deficiencies of CdS Nanosheets to promote catalytic conversion of polysulfides for lithium sulfur batteries

Yangping Li,^a Dongfang Niu,^a* Xingyan Fu,^a Zhiliang Zhang,^a and Xinsheng Zhang^a*

^a State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.

*Corresponding author. Email address: <u>dfniu@ecust.edu.cn</u>, xszhang@ecust.edu.cn

Fig. S1. a) TEM image of CdS NSs. TEM b) and SEM c) images of a thin GO film. d) TGA curve of CdS NSs/rGO composite in air.

Fig. S2. SEM images of the CdS_{1-x} NSs/rGO and CdS NSs/rGO functional separators.

Fig. S3. C 1s XPS spectrum of the CdS_{1-x} NSs/rGO functional separator.

Fig. S4. The intrinsic lithium storage performance of CdS_{1-x} NSs/rGO.

Fig. S5. Cycling performance of the CdS_{1-x} NSs/rGO functional separator with 1 mg/cm² S loading at 1C.

Fig. S6. The discharge/charge curves of the cells with the rGO, CdS NSs/rGO, and CdS_{1-x} NSs/rGO functional separators at 1 C.

Fig. S7. EPR patterns of the cells with the CdS_{1-x} NSs/rGO functional separator before and after repeated charging/discharging.

Catalysts	Rate performance	Initial capacity/Capacity decay	Methods for fabricating deficiencies	References
		(%)		
MoS _{2-x} /HMC	730 mA h/g (2 C)	/	Annealing in H ₂ /Ar	1
MoS _{2-x} /rGO	826 mA h/g (8 C)	1159.9 mA h/g / 0.33 after 100	Annealing in H ₂ /Ar	2
		cycles at 0.2 C		
CNT@TiO2-x	597 mA h/g (2 C)	1149 mA h/g / 0.33 after 100	Annealing in H ₂ /Ar	3
		cycles at 1 C		
NiCo ₂ O _{4-x}	855 mA h/g (5 C)	1221 mA h/g / 0.045 after 800	Hydrothermal followed by annealing in air	4
		cycles at 0.2 C		
O ₂ plasma	/	1028 mA h/g / 0.49 after 105	O ₂ plasma treatment	5
treated PP		cycles at 0.2 C		
separator				
TiS _{2-x}	807 mA h/g (2 C)	956 mA h/g / 0.04 after 1000	Vacuum heat treatment	6
		cycles at 1 C		
Ti _{1-x} O ₂	746 mA h/g (2 C)	656 mA h/g / 0.025 after 500	Solvothermal reaction followed by thermal	7
		cycles at 1 C	calcination	
Fe/Co ₃ O ₄	783 mA h/g (2 C)	902 mA h/g / 0.017 after 1000	Hydrothermal reaction followed by thermal	8
		cycles at 1 C	calcination	
SnS_2/TiO_2	449 mA h/g (2 C)	841 mA h/g / 0.064 after 500	Hydrothermal reaction	9
		cycles at 0.5 C		
Co ₃ S _{4-x}	634mA h/g (2 C)	750 mA h/g / 0.017after 400	Hydrothermal reaction	10
		cycles at 1 C		
TiO ₂ –Ar	571 mA h/g (2 C)	911 mA h/g / 0.082 after 500	Annealing in Ar	11
		cycles at 1 C		
Co _{5.47} N _x -C	640 mA h/g (2 C)	708 mA h/g / 0.04 after 1000	Thermal calcination in NH ₃	12
		cycles at 2 C		
CdS _{1-x} NSs/rGO	837 mA h/g (2 C)	983 mA h/g / 0.089 after 500	Electroreduction treatment	This Work
		cycles at 1 C		

Table S1 Comparison of catalysts with deficiencies reported to date for Li-S batteries

References

1 H. G. Wang, X. C. Li, N. Qin, X. Zhao, H. Cheng, G. Z. Cao and W. J. Zhang, J. Mater. Chem. A., 2019, 7, 12068-12074.

2 H. B. Lin, L. Q. Yang, X. Jiang, G. C. Li, T. R. Zhang, Q. F. Yao, G. Wesley Zheng and J. Yang Lee, Energy Environ. Sci., 2017, **10**, 1476-1486.

3 Y. K. Wang, R. F. Zhang, J. Chen, H. Wu, S. Y. Lu, K. Wang, H. L. Li, C. Harris, K. Xi, R. V Kumar and S. J. Ding, Adv. Energy Mater., 2019, **9**, 1900953.

4 D. Luo, G. R. Li, Y. P. Deng, Z. Zhang, J. D. Li, R. L. Liang, M. Li, Y. Jiang, W. W. Zhang, Y. S. Liu, W. Lei, A. P. Yu and Z. W. Chen, Adv. Energy Mater., 2019, **9**,1900228.

5 Z. Li, Q. Q. Jiang, Z. L. Ma, Q. H. Liu, Z. J. Wu and S. Y. Wang, RSC. Adv., 2015, 5, 79473-79478.

6 Y. Y. Zhao, W. L. Cai, Y. T. Fang, H. S. Ao, Y. C. Zhu and Y. T. Qian, ChemElectroChem, 2019, 6, 2231-2237.

7 J. B. Yang, L. Y. Xu, S. Z. Li, C. Peng, Nanoscale, 2020, 12, 4645-4654.

8 W. J. Wang, Y. Zhao, Y. G. Zhang, J. Y. Wang, G. L. Cui, M. J. Li, Z. Bakenov and X. Wang, ACS Appl. Mater. Interfaces, 2020, **12**, 12763-12773.

9 X. C. Li, G. L. Guo, N. Qin, Z. Deng, Z. G. Lu, D. Shen, X. Zhao, Y. Li, B. L. Su and H. G. Wang, Nanoscale, 2018, **10**, 15505-15512.

10 J. Zhao, D. K. Zhao, L. G. Li, L. Zhou, X. H. Liang, Z. X. Wu and Z. J. Jiang, J. Phys. Chem. C, 2020, **124**, 12259-12268.

11 H. G. Wang, K. L. Yin, N. Qin, X. Zhao, F. J. Xia, Z. Y. Hu, G. L. Guo, G. Z. Cao and W. J. Zhang, J. Mater. Chem. A., 2019, 7, 10346-10353.

12 H. Wu, H. Jiang, Y. Q. Yang, C. Y. Hou, H. T. Zhao, R. Xiao and H. Z. Wang, J. Mater. Chem. A., 2020, **8**, 14498-14505.