Supplementary Information

Understanding the Role of Nickel–Iron (Oxy)hydroxide (NiFeOOH) Electrocatalysts on Hematite Photoanodes

Jihye Lee, Daye Seo, Sunghwan Won and Taek Dong $\operatorname{Chung}\nolimits^*$

Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.

**T. D. C (email: tdchung@snu.ac.kr)*

Fig. S1 XPS core level spectra of Ni 2p region, Fe 2p region, and O 1s region for the NiFeOOH film deposited at 1 V (vs. Ag/AgCl) for 30 min on the Au substrate.

Fig. S2 XRD patterns of FTO substrate (brown), bare hematite (light green) and NiFeOOHcoated hematite (dark green). The diffraction peaks labeled with a hash correspond to FTO. The diffraction peaks labeled with an asterisk are for hematite.

Fig. S3 iR_u -corrected cyclic voltammograms of NiFeOOH electrocatalysts on Au substrates in 1 M KOH at the scan rate of 10 mV s⁻¹.

Fig. S4 Cyclic voltammograms of hematite photoanodes with varying thicknesses of NiFeOOH film in 1 M KOH at the scan rate of 10 mV s⁻¹ in the dark.

Table S1	Electronic	properties	obtained	from N	Aott-S	Schottky	y analysis.
		1 1					/ 2

	Slope	$N_{\rm D}~({\rm cm}^{-3})$	$E_{\mathrm{FB}}\left(\mathrm{V}\right)$
Bare hematite	5.56×10^{10}	7.92×10^{19}	-0.37
Hematite/NiFeOOH (30 s)	4.80×10^{10}	9.18×10^{19}	-0.39
Hematite/NiFeOOH (30 min)	5.92×10^{10}	7.44×10^{19}	-0.37

$$\frac{1}{C_{\rm SC}^2} = \frac{2}{\varepsilon_0 \varepsilon_{\rm r} e N_{\rm D} A^2} \quad (E - E_{\rm FB} - \frac{kT}{e})$$

where C_{SC} is the space charge capacitance at the surface of the hematite electrode, ε_0 is the permittivity of vacuum, ε_r is the relative permittivity (assumed to be 32 for hematite¹), *e* is the elementary charge, N_D is the donor density, *A* is the geometric surface area, *E* is the applied potential, E_{FB} is the flat band potential, *k* is the Boltzmann constant, *T* is the absolute temperature.

References

O. Zandi, A. R. Schon, H. Hajibabaei and T. W. Hamann, *Chem. Mater.*, 2016, 28, 765–771.