Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020

Supporting Information

In-situ growth of an opal-like TiO₂ electron transport layer by atomic layer deposition for perovskite solar cells

Hao Lu,* Bangkai Gu and Song Fang

Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.

Email: luhaoshaobo@163.com, haolu@usts.edu.cn

*Corresponding author

Figure S1. SEM image of PS spheres after annealing with 5 nm ALD TiO_2 thickness.

Figure S2. SEM image of crushed spheres.

Figure S3. Transmission spectra of different TiO₂ ETLs.

Figure S4. SEM image of 100 nm PS spheres.

Figure S5. SEM image of PS 500 nm spheres with perovskite layer.

Figure S6. SEM image of one layer, two layers and three layers samples with low-magnification.

Figure S7. XRD pattern of as-prepared TiO₂ sample.

Figure S8. SEM image of perovskite layer on single layer TiO₂ ETLs.

Figure S9. The integrated current density of ALD TiO₂ and Two layers TiO₂ based devices.

Figure S10. The repeatability of 26 devices of ALD and two layers samples.

Figure S11. Forward and reverse scan of two layers and ALD ${\rm TiO_2}$ devices.

Figure S12. Long time measurement of two layers sample.

Sample	V _{oc} (V)	J _{sc} (mA cm ⁻²)	Fill Factor (%)	Efficiency (%)
Planar	0.99 ± 0.02	23.09 ± 0.28	63.32 ± 4.14	14.95 ± 0.53
Single	1.03 ± 0.02	23.63 ± 0.57	67 ± 2.94	16.43 ± 0.75
Two	1.05 ± 0.01	23.76 ± 0.16	69.96 ± 1.65	17.5 ± 0.55
Three	0.91 ± 0.03	23.77 ± 0.35	57.60 ± 5.54	12.47 ± 1.27

 $\textbf{Table S1}. \ \ \textbf{The photovoltaic parameters of different TiO}_2 \ \textbf{ETLs based devices}.$

Sample	$R_{s}\left(\Omega\right)$	$R_{ct1}(\Omega)$	$R_{ct2}(\Omega)$	$R_{ct} = R_{ct1} + R_{ct2}(\Omega)$	$R_{rec}(\Omega)$
Planar	65.3	152.4	178.9	331.3	1181.5
Single	52.4	155.1	235.1	390.2	1277.1
Two	49.4	132.9	121.0	253.9	2431.6
Three	22.3	208.4	64.87	273.3	11323

Table S2. The fitted value of R_{ct} and R_{rec} of different TiO_2 ETLs based devices.