Electronic Supplementary Information for

# Nitrogen-doped Porous Carbon with Complicated Architecture and

## **Superior K<sup>+</sup> Storage Performance**

Yongsheng Zhou<sup>\*[a,b]</sup>, Yingchun Zhu<sup>[b,e]</sup>, Bingshe Xu<sup>[c]</sup>, and Xueji Zhang<sup>\*[d]</sup>

[a] College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu,

233030, P. R. China

[b] Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China

[c] Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education,

Taiyuan University of Technology, Taiyuan, 030024, P. R. China

[d] School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong

518060, P. R. China

[e] Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

E-mail: yszhou1981@gmail.com; zhangxueji@szu.edu.cn

# Synthesis of N-doped carbon hollow turbostratic tube (CHTT-N) and carbon hollow turbostratic tube (CHTT)

The preparation process of nitrogen-doped nanofiber hybrid membranes is illustrated in Figure 2A. The polyacrylonitrile (PAN) nanofiber membrane was first prepared through a facile singlenozzle electrospinning technique using a commercial electrospinning system (UCALERY Beijing Co., Ltd, China). Typically, 0.5 g of PAN and 0.25 g of urea were dissolved in 4.25 g of dimethylformamide (DMF) at room temperature under magnetic stirring to form a polymer solution after stirring for 3 h to ensure complete solubility. A 4.0 g amount of Ni(Ac)<sub>2</sub> (Ac = acetate) and magnesium nitrate hexahydrate was added to the mixture, and stirring was continued until the polymer solution became clear and then loaded into a 5 mL plastic syringe. The electrospinning process was carried out at a high voltage of 20 kV at a feeding rate of 0.1 mm min<sup>-1</sup> through a stainless-steel needle, which had an inner diameter of 0.5 mm. After evaporation of the solvents from the jet stream, the composite nanofibers of PAN/Ni(Ac)<sub>2</sub>/Mg(NO<sub>3</sub>)<sub>2</sub> were produced and the resulting nonwoven fiber mat was collected. All electrospinning experiments were performed at room temperature. The obtained nonwoven fiber mat was stabilized in air at 275 °C for 2 h with a heating rate of 1 °C/min.

Then, the preoxidized process of the generated PAN/Ni(Ac)<sub>2</sub>/Mg(NO<sub>3</sub>)<sub>2</sub> nanofiber membrane was generated at 180 °C in air atmosphere for 1 h with a heating rate of 1 °C min<sup>-1</sup>. CHTT-N was grown on the resulting product at 1,000 °C under a gas mixture (H<sub>2</sub>: Ar: NH<sub>3</sub>=20: 300: 100 sccm) flow in an induction furnace. The CHTT-N was harvested after the acidic etching of the sample

by a HCl solution to remove MgO. The CHTT material was prepared in a way similar to that for the CHTT material, but NH<sub>3</sub> was not added to the reaction.

In addition, pure CNF was obtained by a direct preoxidization and carbonization processes of the electrospun PAN nanofiber membrane.

#### **Characterization of materials**

Scanning electron microscope (SEM) images were obtained using an S-4800 field emission scanning electron microscope (Hitachi, Japan) operating at 10 kV. The transmission electron microscope (TEM) images were obtained using a FEI Titan G<sub>2</sub> 60-300 operating at 80 kV. X-ray powder diffraction (XRD) pattern of the sample was recorded using a D/max-3C diffractometer equipped with Cu-K $\alpha$  X-ray source. Raman spectra were recorded with a Renishaw RM-1000 Micro Raman Spectrometer. Investigations of chemical compositions were performed using X-ray photoelectron spectroscopy (XPS, Physical Electronics PHI 5600). N<sub>2</sub> sorption analysis was conducted on an ASAP2020 accelerated surface area and porosimetry instrument (Micromeritics), equipped with automated surface area, at 77 K using BarrettEmmettTeller (BET) calculations for the surface area. The pore size distribution (PSD) plot was recorded from the adsorption branch of the isotherm based on the Barrett–Joyner–Halenda (BJH) method.

#### **Electrochemical measurements**

The electrochemical performance of as-prepared composites was carried out via CR2025 cointype cells. The working electrodes were consisted with 80 wt% active materials, 10 wt% ketjen black, and 10 wt% carboxymethyl cellulose, which were mixed with appropriate de-ionized water, pasted on Ni foam, and dried at 80 °C under vacuum for 12 h. The loading density, diameter, and thickness of the prepared electrodes were ~1mg cm<sup>-2</sup>, ~12 mm, and ~65 to 85  $\mu$ m, respectively. For PIBs, the counter electrode was potassium foil, and the electrolyte was 1 M KPF<sub>6</sub> in EC: propylene carbonate (PC) (1: 1 in volume). A glass fiber membrane (Whatman, GF/D) was used as the separator for PIBs. The galvanostatic discharge/charge test was performed on a battery tester (Land 2001A system) between 0.05 and 2.8 V under various current densities from 0.1 to 20 A g<sup>-1</sup>. Cyclic voltammetry (CV) was measured on a CHI660C electrochemical workstation from 0.2 to  $2.0 \text{ mV s}^{-1}$ .

The CHTT-N//CHTT-N PIHC devices were assembled by employing the prepotassiation CHTT-N anode and raw CHTT-N cathode with a mass ratio ranging from 1:0.5 to 1:2. The mass loading of active material in the anode is  $\sim 2 \text{ mg cm}^{-2}$ . During the prepotassiation process, the half-cell was charged–discharged for six cycles at 0.05 A g<sup>-1</sup>. The electrochemical performance tests including galvanostatic charge–discharge and CV were conducted using a Gamry Interface 1000 electrochemical workstation. The power density (P, W kg<sup>-1</sup>) and energy density (E, Wh kg<sup>-1</sup>) of the CHTT-N//CHTT-N PIHC devices were calculated based on the total mass of anode and cathode electrodes using the following equations:

$$p = \frac{\Delta V \times I}{2m} \times 1000 \tag{1}$$
$$E = \frac{P \times I}{3600} \tag{2}$$

Where  $\Delta V(V)$  is the discharge voltage excluding the IR drop, I (A) is the discharge current, m (g) is the total mass of active materials, including anode and cathode, and t (s) is the discharge time, respectively.

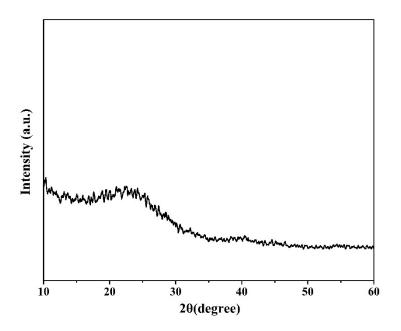



Figure S1. XRD pattern of the CHTT-N.

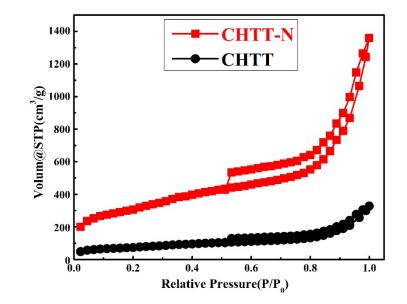



Figure S2. N<sub>2</sub> adsorption-desorption isotherms.

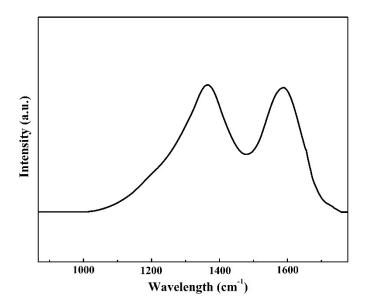



Figure S3. Raman spectra of CHTT-N.

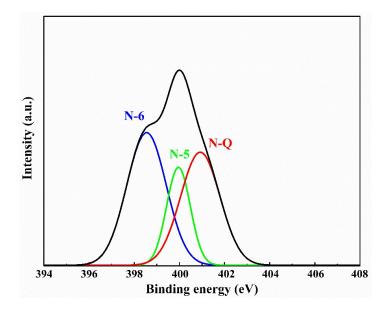
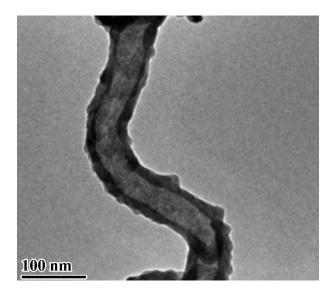
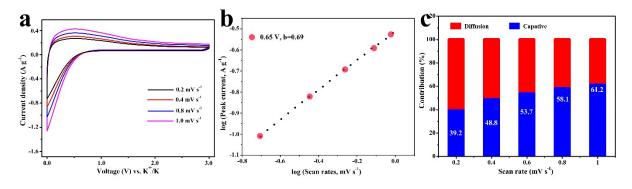
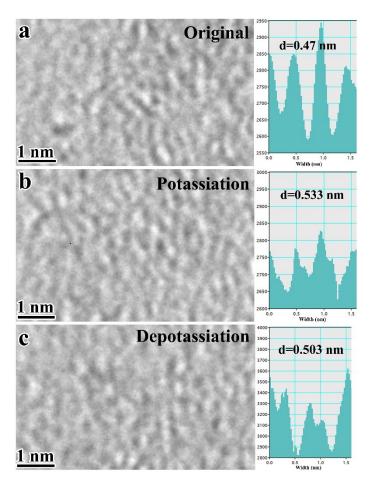
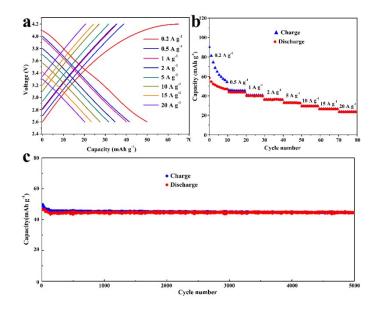


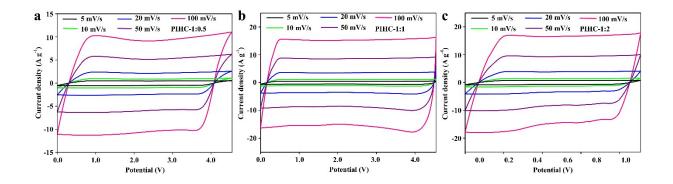

Figure S4. The fine-scanned N 1s spectra of CHTT-N.

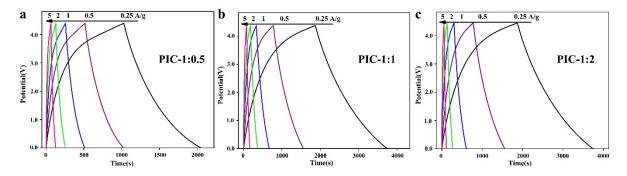


Figure S5. High-magnification TEM image of CHTT-N after 200th cycles.



**Figure S6.** (a) CV curves at different scan rates from 0.2 to  $1.0 \text{ mV s}^{-1}$ . (b) Determination of the b-value according to the relationship between the peak current and the scan rate. (c) Normalized contribution proportions of capacitance and diffusion at different scan rates.




**Figure S7.** HRTEM images and corresponding interlayer spacing of the (a) original, (b) potassiated and (c) depotassiated CHTT-N.




**Figure S8.** Electrochemical properties of the CHTT-N tested as KIB cathode. (a) charge-discharge curves, and (b) rate capability profiles at different current densities from 0.2 to 20 A  $g^{-1}$ . (c) cycle performance at current density of 2 A  $g^{-1}$  for 5000 cycles.

The electrochemical performance of CHTT-N cathodes was evaluated by using galvanostatic charge-discharge operated at high potentials of 2.5-4.2 V vs. K/K<sup>+</sup>. As shown in Figure S6a, the charge-discharge curves of the CHTT-N materials at different current densities are highly symmetrical and quasitriangular without obvious redox peaks, which indicated that CHTT-N electrode possesses a typical capacitive behavior as desirable capacitor-type cathode material. Moreover, the CHTT-N exhibit high capacity and good rate capability at high currents (Figure S6b). The charge capacity of CHTT-N is 53.6 mAh g<sup>-1</sup> at current density of 0.2 A g<sup>-1</sup>. Even at a very high current density of 20 A g<sup>-1</sup>, the CHTT-N cathode can still be charged to 23.5 mAh g<sup>-1</sup>. The CHTT-N cathode also shows a stable cycling performance of 44 mAh g<sup>-1</sup> after 5000 cycles under the current density of 2 A g<sup>-1</sup>, showing its excellent cycling stability as cathode for high-performance PIHCs.



**Figure S9.** Typical CV curves of the CHTT-N//CHTT-N PIHCs at different scan rates of the 5-100 mV s<sup>-1</sup> for the voltage window of 0-4.5 V.



**Figure S10.** Typical charge-discharge curves of the CHTT-N//CHTT-N PIHCs at different current densities of the 0.25-5 A g<sup>-1</sup> for the voltage window of 0-4.5 V.

**Table S1** Comparison of the performances of CHTT-N and other high-performance carbon anodes

 from literatures.

| Materials                                    | Current<br>density<br>(mA g <sup>-1</sup> ) | Capacity (mAh g <sup>-1</sup> ) | Cycling Number (current density, mA g <sup>-1</sup> ) | Ref. |
|----------------------------------------------|---------------------------------------------|---------------------------------|-------------------------------------------------------|------|
| NCNF-650                                     | 25                                          | 248                             | 1000 (500)                                            | 1    |
| NOHPHC                                       | 25                                          | 365                             | 100 (50)                                              | 2    |
| MoS <sub>2</sub> @SnO <sub>2</sub> @<br>C    | 50                                          | 597                             | 25 (50)                                               | 3    |
| MoSe <sub>2</sub> /N-Doped<br>Carbon         | 100                                         | 300                             | 300 (100)                                             | 4    |
| РСМ                                          | 50                                          | 230                             | 200 (500)                                             | 5    |
| CNS                                          | 100                                         | 252                             | 1300 (2000)                                           | 6    |
| S/N@C                                        | 50                                          | 320                             | 900(2000)                                             | 7    |
| V <sub>2</sub> O <sub>5</sub> @CNT<br>Sponge | 10                                          | 145                             | 50(25)                                                | 8    |
| Yolk-Shell<br>FeS <sub>2</sub> @C            | 1000                                        | 360                             | 20(300)                                               | 9    |
| Our work                                     | 100                                         | 397                             | 3000(5000)                                            |      |

### References

- 1. Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu, Y. Lei, Nat. Commun. 2018, 9, 1720.
- 2. J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi, J. Feng, S. Xiong, Adv. Mater. 2018, 30, 1700104.
- 3. Chen, Z.; Yin, D.; Zhang, M., Small 2018, 14, 1703818.
- 4. Ge, J.; Fan, L.; Wang, J.; Zhang, Q.; Liu, Z.; Zhang, E.; Liu, Q.; Yu, X.; Lu, B., Adv. Energy

Mater. 2018, 8,1801477.

- M. Chen, W. Wang, X. Liang, S. Gong, J. Liu, Q. Wang, S. Guo, H. Yang, *Adv. Energy Mater.* 2018, 8, 1800171.
- J. Chen, B. Yang, H. Hou, H. Li, L. Liu, L. Zhang, X. Yan, Adv. Energy Mater. 2019, 9, 1803894.
- A. Mahmood, S. Li, Z. Ali, H. Tabassum, B. Zhu, Z. Liang, W. Meng, W. Aftab, W. Guo, H. Zhang, et al., *Adv. Mater.* 2018, 30, 1805430.
- Ye, F.; Lu, D.; Gui, X.; Wang, T.; Zhuang, X.; Luo, W.; Huang, Y., J. Materiomics 2018, 2352-8478.
- Zhao, Y.; Zhu, J.; Ong, S. J. H.; Yao, Q.; Shi, X.; Hou, K.; Xu, Z. J.; Guan, L., Adv. Energy Mater. 2018, 8, 1802565.