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Experimental section

Synthesis of N-doped carbon hollow turbostratic tube (CHTT-N) and carbon hollow 

turbostratic tube (CHTT)

The preparation process of nitrogen-doped nanofiber hybrid membranes is illustrated in Figure 

2A. The polyacrylonitrile (PAN) nanofiber membrane was first prepared through a facile single-

nozzle electrospinning technique using a commercial electrospinning system (UCALERY Beijing 

Co., Ltd, China). Typically, 0.5 g of PAN and 0.25 g of urea were dissolved in 4.25 g of 

dimethylformamide (DMF) at room temperature under magnetic stirring to form a polymer 

solution after stirring for 3 h to ensure complete solubility. A 4.0 g amount of Ni(Ac)2 (Ac = 

acetate) and  magnesium nitrate hexahydrate was added to the mixture, and stirring was continued 

until the polymer solution became clear and then loaded into a 5 mL plastic syringe. The 

electrospinning process was carried out at a high voltage of 20 kV at a feeding rate of 0.1 mm 

min−1 through a stainless-steel needle, which had an inner diameter of 0.5 mm. After evaporation 

of the solvents from the jet stream, the composite nanofibers of PAN/Ni(Ac)2/Mg(NO3)2 were 

produced and the resulting nonwoven fiber mat was collected. All electrospinning experiments 

were performed at room temperature. The obtained nonwoven fiber mat was stabilized in air at 

275 °C for 2 h with a heating rate of 1 °C/min.

Then, the preoxidized process of the generated PAN/Ni(Ac)2/Mg(NO3)2 nanofiber membrane 

was generated at 180 °C in air atmosphere for 1 h with a heating rate of 1 °C min−1. CHTT-N was 

grown on the resulting product at 1,000 oC under a gas mixture (H2: Ar: NH3=20: 300: 100 sccm) 

flow in an induction furnace. The CHTT-N was harvested after the acidic etching of the sample 
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by a HCl solution to remove MgO. The CHTT material was prepared in a way similar to that for 

the CHTT material, but NH3 was not added to the reaction.

In addition, pure CNF was obtained by a direct preoxidization and carbonization processes of 

the electrospun PAN nanofiber membrane. 

Characterization of materials

Scanning electron microscope (SEM) images were obtained using an S-4800 field emission 

scanning electron microscope (Hitachi, Japan) operating at 10 kV. The transmission electron 

microscope (TEM) images were obtained using a FEI Titan G2 60-300 operating at 80 kV. X-ray 

powder diffraction (XRD) pattern of the sample was recorded using a D/max-3C diffractometer 

equipped with Cu-Kα X-ray source. Raman spectra were recorded with a Renishaw RM-1000 

Micro Raman Spectrometer. Investigations of chemical compositions were performed using X-ray 

photoelectron spectroscopy (XPS, Physical Electronics PHI 5600). N2 sorption analysis was 

conducted on an ASAP2020 accelerated surface area and porosimetry instrument (Micromeritics), 

equipped with automated surface area, at 77 K using BarrettEmmettTeller (BET) calculations for 

the surface area. The pore size distribution (PSD) plot was recorded from the adsorption branch of 

the isotherm based on the Barrett−Joyner−Halenda (BJH) method.

 Electrochemical measurements

The electrochemical performance of as-prepared composites was carried out via CR2025 coin-

type cells. The working electrodes were consisted with 80 wt% active materials, 10 wt% ketjen 

black, and 10 wt% carboxymethyl cellulose, which were mixed with appropriate de-ionized water, 

pasted on Ni foam, and dried at 80 oC under vacuum for 12 h. The loading density, diameter, and 

thickness of the prepared electrodes were ~1mg cm-2, ~12 mm, and ~65 to 85 μm, respectively. 
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For PIBs, the counter electrode was potassium foil, and the electrolyte was 1 M KPF6 in EC: 

propylene carbonate (PC) (1: 1 in volume). A glass fiber membrane (Whatman, GF/D) was used 

as the separator for PIBs. The galvanostatic discharge/charge test was performed on a battery tester 

(Land 2001A system) between 0.05 and 2.8 V under various current densities from 0.1 to 20 A g-

1. Cyclic voltammetry (CV) was measured on a CHI660C electrochemical workstation from 0.2 to 

2.0 mV s-1.

The CHTT-N//CHTT-N PIHC devices were assembled by employing the prepotassiation 

CHTT-N anode and raw CHTT-N cathode with a mass ratio ranging from 1:0.5 to 1:2. The mass 

loading of active material in the anode is ∼2 mg cm−2. During the prepotassiation process, the half-

cell was charged−discharged for six cycles at 0.05 A g−1. The electrochemical performance tests 

including galvanostatic charge−discharge and CV were conducted using a Gamry Interface 1000 

electrochemical workstation. The power density (P, W kg−1) and energy density (E, Wh kg−1) of 

the CHTT-N//CHTT-N PIHC devices were calculated based on the total mass of anode and 

cathode electrodes using the following equations:

                                  (1)
1000

2m
V Ip  

 

                                              (2)3600
P IE 



Where ΔV (V) is the discharge voltage excluding the IR drop, I (A) is the discharge current, m 

(g) is the total mass of active materials, including anode and cathode, and t (s) is the discharge 

time, respectively.
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Figure S1. XRD pattern of the CHTT-N.
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Figure S2. N2 adsorption−desorption isotherms. 

6



Figure S3. Raman spectra of CHTT-N.
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Figure S4. The fine-scanned N 1s spectra of CHTT-N.
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Figure S5. High-magnification TEM image of CHTT-N after 200th cycles.
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Figure S6. (a) CV curves at different scan rates from 0.2 to 1.0 mV s−1. (b) Determination of the 

b-value according to the relationship between the peak current and the scan rate. (c) Normalized 

contribution proportions of capacitance and diffusion at different scan rates.
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Figure S7. HRTEM images and corresponding interlayer spacing of the (a) original, (b) 

potassiated and (c) depotassiated CHTT-N.
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Figure S8. Electrochemical properties of the CHTT-N tested as KIB cathode. (a) charge-discharge 

curves, and (b) rate capability profiles at different current densities from 0.2 to 20 A g-1. (c) cycle 

performance at current density of 2 A g-1 for 5000 cycles.

  The electrochemical performance of CHTT-N cathodes was evaluated by using galvanostatic 

charge-discharge operated at high potentials of 2.5-4.2 V vs. K/K+. As shown in Figure S6a, the 

charge-discharge curves of the CHTT-N materials at different current densities are highly 

symmetrical and quasitriangular without obvious redox peaks, which indicated that CHTT-N 

electrode possesses a typical capacitive behavior as desirable capacitor-type cathode material. 

Moreover, the CHTT-N exhibit high capacity and good rate capability at high currents (Figure 

S6b). The charge capacity of CHTT-N is 53.6 mAh g-1 at current density of 0.2 A g-1. Even at a 

very high current density of 20 A g-1, the CHTT-N cathode can still be charged to 23.5 mAh g-1. 

The CHTT-N cathode also shows a stable cycling performance of 44 mAh g-1 after 5000 cycles 

under the current density of 2 A g-1, showing its excellent cycling stability as cathode for high-

performance PIHCs.  
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Figure S9. Typical CV curves of the CHTT-N//CHTT-N PIHCs at different scan rates of the 5-100 

mV s-1 for the voltage window of 0-4.5 V.
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Figure S10. Typical charge-discharge curves of the CHTT-N//CHTT-N PIHCs at different current 

densities of the 0.25-5 A g-1 for the voltage window of 0-4.5 V.
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Table S1 Comparison of the performances of CHTT-N and other high-performance carbon anodes 

from literatures.

Materials Current 
density 
(mA g-1)

Capacity (mAh g-1) Cycling Number (current 
density, mA g-1)

Ref.

NCNF-650 25 248 1000 (500) 1

NOHPHC 25 365 100 (50) 2

MoS2@SnO2@
C

50 597 25 (50) 3

MoSe2/N-Doped 
Carbon

100 300 300 (100) 4

PCM 50 230 200 (500) 5

CNS 100 252 1300 (2000) 6

S/N@C 50 320 900(2000) 7

 V2O5@CNT 
Sponge

10 145 50(25) 8

Yolk-Shell 
FeS2@C

1000 360 20(300) 9

Our work 100 397 3000(5000)
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