Dual functioning porous catalysts: Robust electro-oxidation of small organic molecules and water electrolysis at bimetallic Ni/Cu foam

Mohamed R. Rizk, Muhammad G. Abd El-Moghny*, Amina Mazhar, Mohamed. S. El-Deab*, and B.E. El-Anadouli*

Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt

*corresponding authors

E-mail addresses: gmohamd@sci.cu.edu.eg (Muhammad G. Abd El-Moghny), msaada68@yahoo.com (M S. El-Deab), and Bahgat@sci.cu.edu.eg (B.E. El-Anadouli)

Figure S1: The EDS analyses of (A) Ni foam, and (B) Ni/Cu foam.

Figure S2: XPS spectra of O1s for the Ni foam (A) and the Ni/Cu foam (B), respectively.

Figure S3: CVs of: (A) Ni foam, and (B) Ni/Cu foam measured in 1 M KOH solution at various potential scan rates from 100 to 350 mV s⁻¹. (C) The relation between the capacitive current densities (I_c) recorded at 0.62 V and scan rates (υ) for the Ni foam (black line), and the Ni/ Cu foam (red line).

Figure S4: : LSVs recorded at different temperatures for GOR at Ni foam (A), and Ni/Cu foam (B) carried out in 0.3 M KOH solution containing 0.1 M glycerol.

Figure S5: CVs for the Cu bare electrode (green line), Ni foam (red line), and Ni/Cu foam (blue line) carried out in 1 M KOH with potential scan rate of 10 m V s⁻¹.

Figure S6: Tafel plots for Ni foam (black line), and Ni/Cu foam (red line) during OER (A), and HER (B) carried out in an aqueous solution of 1 M KOH at a potential scan rate of 0.1 mV s⁻¹.

Figure S7: Nyquist plots during OER at 370 mV (A), and HER at -80 mV (B) for the Ni foam (black line) and Ni/Cu foam (red line) measured in 1 M KOH solution.

(A)

(B)

Table S1: Comparison	of the HER	activity for sev	veral catalysts	reported in	recent years.
1		v	•	1	•

Catalyst	η @ 10 mA/cm² (mV)	Reference
Ni/Cu foam	80	This work
U-CNT-900	255	1
Co-NCNT/CC ^a	180	2
CoOx/CN	270	3
NiS ₂ /CC ^a	149	4
Ni ₃ S ₂ /NF ^a	123	
MoC _x nano-octahedrons	150	5

Ni ₂ P nanoparticles	230	6
WP ₂ submicroparticles	153	7
CoP/CC ^a	209	8
WP NA/CC ^a	150	9
NiMoO ₄ -Ni(OH) ₂ /NF	93	10
NiFe LDH-NS@DG10	300	11
Ni(OH) ₂ @Ni/CC	68	12
NiSe-Ni _{0.85} Se/CP	101	13
FNHNs/NF	140	14
Fe–Ni ₃ C-2%	178	14
NiMoN-550	89	15
CoNi-OOH-30(40)	210	16
NiFeCo LDH/NF	108	17

Table S2: Comparison of the UOR activity for several recently reported catalysts.

Catalyst	Potential @ 10 mA/cm ² (V vs· RHE)	Reference
Ni/Cu foam	1.38	This work
NF/NiMoO-Ar	1.37	18
Ni ₃ N NA/CC	1.35	19
Ni ₂ P/NF	1.37	20
Ni(OH) ₂ nanotube-NF	1.41	21
NiO nanosheet array	1.38	22
NiMoO ₄ -Ni(OH) ₂ /NF	1.34	10

ERGO-Ni	1.45	23
NiCo alloy	1.53	24
NiMo sheet array	1.37	25
L-MnO ₂	1.37	26
Ni(OH)2 nanocube	1.55	27
NiFeCo LDH/NF	1.35	17
Ni(OH) ₂ nanosheets	1.52	28
Fe _{11.1%} Ni ₃ S ₂ /Ni Foam	1.40	29

References

- 1 S. Gao, G.-D. Li, Y. Liu, H. Chen, L.-L. Feng, Y. Wang, M. Yang, D. Wang, S. Wang and X. Zou, *Nanoscale*, 2015, **7**, 2306–2316.
- 2 Z. Xing, Q. Liu, W. Xing, A. M. Asiri and X. Sun, *ChemSusChem*, 2015, **8**, 1850–1855.
- 3 H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang and Y. Wang, J. Am. Chem. Soc., 2015, **137**, 2688–2694.
- 4 C. Tang, Z. Pu, Q. Liu, A. M. Asiri and X. Sun, *Electrochim. Acta*, 2015, **153**, 508–514.
- 5 H. Bin Wu, B. Y. Xia, L. Yu, X.-Y. Yu and X. W. D. Lou, *Nat. Commun.*, 2015, **6**, 1–8.
- 6 L. Feng, H. Vrubel, M. Bensimon and X. Hu, *Phys. Chem. Chem. Phys.*, 2014, **16**, 5917–5921.
- 7 Z. Xing, Q. Liu, A. M. Asiri and X. Sun, Acs Catal., 2015, 5, 145–149.
- 8 J. Tian, Q. Liu, A. M. Asiri and X. Sun, J. Am. Chem. Soc., 2014, **136**, 7587–7590.
- 9 Z. Pu, Q. Liu, A. M. Asiri and X. Sun, ACS Appl. Mater. Interfaces, 2014, 6, 21874–21879.
- 10 S. Hu, H. Wu, C. Feng and Y. Ding, *Int. J. Hydrogen Energy*, 2020, **45**, 21040–21050.
- 11 Y. Jia, L. Zhang, G. Gao, H. Chen, B. Wang, J. Zhou, M. T. Soo, M. Hong, X. Yan and G. Qian, *Adv. Mater.*, 2017, **29**, 1700017.
- 12 Z. Xing, L. Gan, J. Wang and X. Yang, J. Mater. Chem. A, 2017, 5, 7744–7748.
- 13 Y. Chen, Z. Ren, H. Fu, X. Zhang, G. Tian and H. Fu, *Small*, 2018, **14**, 1800763.
- 14 J. Liu, Y. Yang, B. Ni, H. Li and X. Wang, *Small*, 2017, **13**, 1602637.
- 15 Z. Yin, Y. Sun, C. Zhu, C. Li, X. Zhang and Y. Chen, J. Mater. Chem. A, 2017, 5, 13648–13658.
- 16 C. Yu, J. Lu, L. Luo, F. Xu, P. K. Shen, P. Tsiakaras and S. Yin, *Electrochim. Acta*, 2019, **301**, 449–457.
- 17 P. Babar, A. C. Lokhande, V. Karade, B. Pawar, M. G. Gang, S. Pawar and J. H. Kim, *ACS Sustain. Chem. Eng.*
- Z.-Y. Yu, C.-C. Lang, M.-R. Gao, Y. Chen, Q.-Q. Fu, Y. Duan and S.-H. Yu, *Energy Environ. Sci.*, 2018, 11, 1890–1897.
- 19 Q. Liu, L. Xie, F. Qu, Z. Liu, G. Du, A. M. Asiri and X. Sun, *Inorg. Chem. Front.*, 2017, **4**, 1120–1124.
- 20 D. Liu, T. Liu, L. Zhang, F. Qu, G. Du, A. M. Asiri and X. Sun, J. Mater. Chem. A, 2017, 5, 3208–3213.
- 21 R.-Y. Ji, D.-S. Chan, J.-J. Jow and M.-S. Wu, *Electrochem. commun.*, 2013, **29**, 21–24.
- 22 M.-S. Wu, G.-W. Lin and R.-S. Yang, J. Power Sources, 2014, 272, 711–718.
- 23 D. Wang, W. Yan, S. H. Vijapur and G. G. Botte, *Electrochim. Acta*, 2013, **89**, 732–736.
- 24 W. Xu, H. Zhang, G. Li and Z. Wu, *Sci. Rep.*, 2014, **4**, 5863.
- 25 Y. Liang, Q. Liu, A. M. Asiri and X. Sun, *Electrochim. Acta*, 2015, **153**, 456–460.
- 26 S. Chen, J. Duan, A. Vasileff and S. Z. Qiao, *Angew. Chemie Int. Ed.*, 2016, **55**, 3804–3808.

- 27 M.-S. Wu, R.-Y. Ji and Y.-R. Zheng, *Electrochim. Acta*, 2014, **144**, 194–199.
- 28 X. Zhu, X. Dou, J. Dai, X. An, Y. Guo, L. Zhang, S. Tao, J. Zhao, W. Chu and X. C. Zeng, *Angew. Chemie Int. Ed.*, 2016, **55**, 12465–12469.
- 29 W. Zhu, Z. Yue, W. Zhang, N. Hu, Z. Luo, M. Ren, Z. Xu, Z. Wei, Y. Suo and J. Wang, *J. Mater. Chem. A*, 2018, **6**, 4346–4353.