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Figure S1. AFM topography images of neat as-spin-coated PS-b-P2VP films. (a) shows a 4 µm 

by 4 µm AFM topography image and (b) shows a 1 µm by 1 µm AFM topography image.    
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Figure S2. AFM topography images of neat PS-b-P2VP films solvent annealed in chloroform for 

various lengths of time. Above each AFM image the length of time the film in the image was 

solvent annealed is indicated in the format minutes:seconds.    
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Figure S3. TEM image of the 101 nm length by 16 nm diameter gold nanorods. 



6 

Figure S4. UV-vis-NIR spectrum of the 101 nm length by 16 nm diameter gold nanorods in 

water.
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Figure S5. Diagram for identifying whether a gold nanorod in the bridging state is at a defect 

in the hexagonal lattice or is not at a defect in the hexagonal lattice.    
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Figure S6. Diagram for identifying whether a gold nanorod in the centered state is at a defect 

in the hexagonal lattice or is not at a defect in the hexagonal lattice. 



MODEL DETAILS

Thin cylindrical AB-diblock copolymer nanocomposite films were modeled with a modified

version of the Hybrid Particle-Field Theory method developed by Sides and coworkers.1 The pri-

mary modifications are that nanorods are modeled with an anisotropic function2, surfaces are in-

cluded as cavity functions to simulate the confinement seen in a thin film3,4, and polymer segment

mass is distributed by a Gaussian smearing function2–4 with standard deviation of 0.2 Rg, where

Rg is the ideal radius of gyration of the diblock copolymer. The diblock copolymer chains are

represented as discrete Gaussian chains with N = NA+NB segments, where the statistical segment

sizes and monomer volumes of the two blocks are assumed to be identical.

The discrete Gaussian polymer chain connectivity is modeled using the harmonic bonding po-

tential

βU0 =
nD

∑
i

N−1

∑
j

3
∣∣ri, j− ri, j+1

∣∣2
2b2 (1)

where nD is the number of diblock chains and b is the statistical size of a polymer segment. Density

deviations away from the bulk density, ρ0, are penalized using a Helfand compressibility potential,

given by

βU1 =
κ

2ρ0

∫
dr [ρ̂+(r)−ρ0]

2 (2)

where ρ̂+ = ρ̂DA+ ρ̂DB+ ρ̂NR+ ρ̂W is the spatially varying total density and κ controls the strength

of the density fluctuations. In the limit κ→∞, the strictly incompressible model is recovered. ρ̂DA,

ρ̂DB, ρ̂NR, and ρ̂W are the microscopic densities of the A-block of the diblock chain, B-block of the

diblock chain, nanorods, and confining surface, respectively. The nanorods are treated as having

A-like chemistry and are described by the anisotropic function

ρ̂NR(r) =
ρ0

4
erfc

[
|u · (r− rc)|−LNR/2

ξNR

]
erfc

[
|u× (r− rc)|−RNR

ξNR

]
(3)

where u is the unit vector pointing in the long direction of the nanorod, rc is the position of the

nanorod center, LNR is the nanorod length, RNR is the nanorod radius, and ξNR is the length scale

defining the distance over which the nanorod density drops from ρ0 to 0. The confining surface is

a soft wall of thickness TW on the bottom and top of the simulation box, and is neutral to both A

and B chemistries. It is described by the function

ρ̂W (r) =
ρ0

2
erfc

[
min(rz,Lz− rz)−TW

ξW

]
(4)
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where rz is the z-component of r, Lz is the box size in the z-dimension, and ξW is the length scale

over which the surface drops from a density of ρ0 to a density of 0. A and B components are

assumed to interact through a purely repulsive, Flory-like contact potential given by

βU2 =
χ

ρ0

∫
dr [ρ̂DA(r)+ ρ̂NR(r)] ρ̂DB(r) (5)

where the Flory parameter χ quantifies the magnitude of incompatibility between A and B com-

ponents.

We assume that the mass of each polymer segment maintains a Gaussian distribution about its

center, such that ρ̂K(r), the microscopic density of polymer segment type K, is given by

ρ̂K(r) =
∫

dr′h(r− r′)ρ̂K,c(r′) = (h∗ ρ̂K,c)(r) (6)

where ρ̂K,c(r) is the distribution of polymer segment centers given by

ρ̂K,c(r) =
nK

∑
i

NK

∑
j

δ (r− ri, j), (7)

h(r) is the Gaussian smearing function given by

h(r) =
(

1
2πa2

)3/2

e−|r|
2/2a2

(8)

where a is the smearing length scale (0.2 Rg in this work), and the last expression in Equation 6

introduces our shorthand notation for a convolution integral.

By employing a standard Hubbard-Stratonovich particle-to-field transformation, we arrive at a

partition function

Z = z1

∫
D{w}eH [{w}] (9)

where z1 is a numerical prefactor containing the thermal de Broglie wavelengths and normalization

constants from the Gaussian functional integrals used to decouple the particle interactions, and H

is the effective Hamiltonian given by

H [{w}] = ρ0

2κ

∫
dr w+(r)2− iρ0

∫
drw+(r)−

∫
drwA(r)ρ̂NR

+
ρ0

χ

∫
dr
[
w(+)

AB (r)2 +w(−)
AB (r)2

]
−nD lnQD [µA,µB]

(10)

Here, {w} represents the set of chemical potential fields w(+)
AB (r), w(−)

AB (r), and w+(r); µA and µB

are defined by µK = (h∗wK)(r) where

wA = i
(

w++w(+)
AB

)
−w(−)

AB , (11)

wB = i
(

w++w(+)
AB

)
+w(−)

AB , (12)
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QD is the partition functions for a single diblock chain. QD is calculated iteratively from the chain

propagator q( j,r),

QD[µA,µB] =
1
V

∫
dr q(P,r) (13)

with the chain propagator constructed using a Chapman-Kolmogorov equation

q( j+1,r) = e−µK(r)
∫

dr Φ(r− r′)q( j,r) (14)

where K is either A or B depending on the type of segment j+1 and Φ(r− r′) is the normalized

bond transition probability.

The set of mean-field equations describing this system can be written as

∂H

∂wK
= 0 (15)

where wK represents any field w+, w(+)
AB , or w(−)

AB . To compute mean-field solutions, we evolve the

fields according to (
∂wK(r)

∂ t

)
=−λK

(
∂H

∂wK(r)

)
(16)

where λK is the relaxation coefficient for field wK and t is a fictitious time. We use a first-order 

semi-implicit scheme5 to numerically evolve the fields. For each free energy calculation, the 

vertical distance between the nanorod and the surface played a significant role in the resulting free 

energy since the interfaces are “soft”, in that the surfaces of each are essentially a smoothed step 

function. In order to prevent this effect from dominating the free energy, the vertical position of 

the rod relative to the surface was chosen to minimize the free energy using Brent’s method in 

each simulation. Figure S7 shows the free energy calculations for all 3 nanorod sizes tested.
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Figure S7. Mean-field free energy differences for nanorods in different configurations as a function 

of nanorod length for nanorods of diameter a) 1.0 Rg, b) 1.5 Rg, and c) 2.0 Rg. The nanorod length in 

the x-axis is normalized by the cylindrical domain nearest neighbor center-to-center distance, rctc. Free 

energy differences in each plot are calculated relative to the free energy of a rod of the same diameter in the 

vertical configuration with a length of 2 Rg, the shortest length in each case. The positions of the   

101x16 nm and 70x12 nm rods used in experiments are marked in a) to show roughly where the 

experimental nanorod sizes fit into these calculations.
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