# Bi-continuous orthorhombic soft matter phase made of polycatenar molecules 

Joanna Matraszek, Damian Pociecha, Nataša Vaupotič, Mirosław Salamończyk, Martin Vogrin, Ewa Gorecka


#### Abstract

Methods The products were separated on the column chromatography using silica gel $60 \AA$ (230-400 mesh Fluka). The molecular structure and purity of the synthesized compounds were confirmed by the following analytical methods: analytical thin-layer chromatography (TLC), ${ }^{1} \mathrm{HNMR},{ }^{13} \mathrm{CNMR}$ spectroscopy and elemental analysis. Analytical thin-layer chromatography (TLC) was performed using Silica Gel $60 \AA$ F254 (Merck) and visualized using iodine vapor and/or UV lamp ( 254 nm and 365 nm ). NMR spectra were measured with NMR Bruker AVANCE 300 MHz or Bruker BioSpin GmbH 500 MHz spectrometer using tetramethylsilane as an internal standard. Chemical shifts are reported in ppm. High-resolution mass spectra were performed on Spectrometer Quattro LC (Triple Quadrupole Mass Spectrometer) apparatus using the TOF MS ES+ method. The initial X-ray studies for all materials were performed with the Bruker Nanostar system (CuK $\alpha$ line, three-pinhole beam collimator, Vantec 2000 area detector). Samples were prepared as droplets on a heated surface. For chosen materials, additional X-ray measurements were carried out on the SAXS beam line (7.3.3) at the Advanced Light Source, Lawrence Berkeley National Laboratory at the wavelength 0.12398 nm . Samples were placed on heating plate as droplets. The scattering intensity was recorded using the Pilatus 2 M detector. Optical studies were performed by using the Zeiss Axio Imager A2m polarizing microscope equipped with a Linkam heating stage. Samples were observed in glass cells of various thicknesses: from 1.8 to $10 \mu \mathrm{~m}$. The birefringence was calculated from the optical retardation at green light ( $\lambda=545 \mathrm{~nm}$ ), measured with a CRI Abrio Imaging System. Knowing the sample thickness, the retardation was recalculated into optical birefringence. Calorimetric studies were performed with a TA DSC Q200 calorimeter, samples of mass from 1 to 3 mg were sealed in aluminum pans and kept in nitrogen atmosphere during measurement, both heating and cooling scans were performed with a rate of $5-10 \mathrm{~K} / \mathrm{min}$.


## Synthesis



Scheme S1. The reaction chain leading to the studied molecules, R stands for the alkyl chain - see the main text. Reagents and conditions: (i) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, saturated solution of $\mathrm{NaHCO}_{3}$, inert gas atmosphere, reflux; (ii) THF, DMAP, TEA, reflux, 5 h ;

Below, we present the synthesis of a bent mesogenic molecule with $R=C_{4} H_{9}$ (compound 1) as a general method to obtain final compounds 1-6. Other molecules were obtained under similar reaction conditions and the same molar ratio of substrates. ${ }^{1} \mathrm{HNMR},{ }^{13} \mathrm{CNMR}$ spectroscopy and elemental analysis of the obtained compounds confirmed the expected structures.

## General procedure for the synthesis of target materials 1-6

## Synthesis of 4,4'-(thiophene-2,5-diyl)diphenol

To a solution of 2,5-dibromothiophene ( $12.0 \mathrm{~g}, 50.0 \mathrm{mmol}$ ) and 4-hydroxyphenylboronic acid pinacol ester ( $26.2 \mathrm{~g}, 119.0 \mathrm{mmol}$ ) in THF $(150 \mathrm{~mL})$ saturated solution of $\mathrm{NaHCO}_{3}(70 \mathrm{~mL})$ was added all at once. Then the reaction mixture was degassed with argon and palladium catalyst ( $\left.1.4 \mathrm{~g} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right)$ was added. The reaction mixture was stirred and left for 8 h at the boiling point of solvents. After that it was extracted three times with chloroform, the colected organic layers were dried over anhydrous magnesium sulphate and the solvents were removed. The product was separated on column chromatography on silica gel and eluted with mixture of solvents gradualy changing concentration of methanol in chloroform from 1\% to 5 \%. Yield $60 \%$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{MeOD}, 300 \mathrm{MHz}): \delta(\mathrm{ppm}) 7.45(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.12(2 \mathrm{H}, \mathrm{s}), 6.80(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{MeOD}, 75 \mathrm{MHz}): \delta(\mathrm{ppm}) 158.38,143.87,127.84,127.70,123.63 ;$
Elemental analysis ( $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}, \mathrm{M}=268.33$ ) - Calculated: $\mathrm{C}(71.62 \%), \mathrm{H}(4.51 \%)$; Found: $\mathrm{C}(71.85 \%), \mathrm{H}(4.48 \%)$;

Synthesis of 4-(5-(4-hydroxyphenyl)thiophen-2-yl)phenyl 3,4,5-tris(hexadecyloxy)benzoate
4,4'-(thiophene-2,5-diyl)diphenol ( $6.0 \mathrm{~g}, 20.1 \mathrm{mmol}$ ) was dissolved in dry THF ( 70 mL ), DMAP (catalytic amount) and triethylamine ( 1 mL ) was added all at once. Then a solution of 3,4,5-trihexadecyloxybenzoyl chloride ( $15.6 \mathrm{~g}, 18.0 \mathrm{mmol}$ ) in THF ( 15 mL ) was added dropwise. The reaction mixture was stirred at room temperature over night. The solvent was evaporated and the crude compound was isolated on column chromatography on silica gel using $\mathrm{CHCl}_{3}$ as eluent. Yield $68 \%$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 7.66(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.48(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.45(2 \mathrm{H}, \mathrm{s}), 7.24-7.15(4 \mathrm{H}, \mathrm{m}), 6.81(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 165.34,155.48,152.97,150.14,145.44,143.86,143.14,143.07,141.45,132.38,127.04,126.54,124.12$, $123.67,122.89,122.23,115.79,108.59,73.63,69.28,34.53,31.92,30.33,29.71,29.67,29.64,29.57,29.40,29.29,27.99,26.08,22.68$, 18.38, 14.11;

Elemental analysis ( $\mathrm{C}_{71} \mathrm{H}_{112} \mathrm{O}_{6} \mathrm{~S}, \mathrm{M}=1093.71$ ) - Calculated: $\mathrm{C}(77.97 \%), \mathrm{H}(10.32 \%)$; Found: $\mathrm{C}(78.08 \%), \mathrm{H}(10.45 \%)$;

Synthesis of the final compound with $R=\mathrm{C}_{4} \underline{H_{9}}$ (1)
This synthesis was performed according to the previously described procedure 2 starting from the monosubstituted derivatives of thiophenediphenol ( $250 \mathrm{mg}, 0.23 \mathrm{mmol}$ ) and 4'-butoxy-[1,1'-biphenyl]-4-carbonyl chloride ( $79 \mathrm{mg}, 0.27 \mathrm{mmol}$ ). For purification by the column chromatography a mixture of solvents toluene/hexan (4/1, v/v) was used. Yield $93 \%$.

## Analytical data for target compounds

Compound 1 (with $\mathrm{R}=\mathrm{C}_{4} \mathrm{H}_{9}$ )
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 8.25(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.72-7.67(6 \mathrm{H}, \mathrm{m}), 7.60(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.42(2 \mathrm{H}, \mathrm{s}), 7.29(2 \mathrm{H}, \mathrm{s}), 7.25-7.22(4 \mathrm{H}$, $\mathrm{m}), 7.01(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 4.08-4.01(8 \mathrm{H}, \mathrm{m}), 1.89-1.72(8 \mathrm{H}, \mathrm{m}), 1.57-1.45(8 \mathrm{H}, \mathrm{m}), 1.47-1.20(72 \mathrm{H}, \mathrm{m}), 1.00(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 0.90(9 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=6.6 \mathrm{~Hz}$ );
${ }^{13}$ C-NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 165.11,165.01,159.65,153.01,150.50,150.48,146.11,143.10,142.93,142.91,132.10,131.96,130.78$, $128.42,127.36,126.76,126.73,126.64,124.29,123.78,122.33,122.31,115.02,108.61,115.02,108.61,73.62,69.31,67.87,31.97,31.33$, $30.39,29.80,29.78,29.75,29.72,29.71,29.68,29.62,29.44,29.42,29.41,29.34,26.17,26.10,22.73,19.29,14.16,13.89$;
Elemental analysis ( $\mathrm{C}_{88} \mathrm{H}_{128} \mathrm{O}_{8} \mathrm{~S}, \mathrm{M}=1346.02$ ) - Calculated: $\mathrm{C}(78.52 \%), \mathrm{H}(9.59 \%)$; Found: $\mathrm{C}(78.65 \%), \mathrm{H}(9.50 \%)$;
HRMS (TOF) m/z for $\mathrm{C}_{88} \mathrm{H}_{128} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]+$; Calculated: 1367.9228; Found 1367.9268;
Compound 2 (with $R=\mathrm{C}_{5} \mathrm{H}_{11}$ )
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 8.25(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.72-7.67(6 \mathrm{H}, \mathrm{m}), 7.61(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.42(2 \mathrm{H}, \mathrm{s}), 7.29(2 \mathrm{H}, \mathrm{s}), 7.24(4 \mathrm{H}, \mathrm{m})$, $7.02(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 4.09-4.00(8 \mathrm{H}, \mathrm{m}), 1.86-1.74(8 \mathrm{H}, \mathrm{m}), 1.55-1.40(8 \mathrm{H}, \mathrm{m}), 1.35-1.24(74 \mathrm{H}, \mathrm{m}), 0.95(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 0.88(9 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 165.10,165.00,159.63,153.00,150.47,146.11,143.09,142.92,142.90,132.09,131.95,130.77,128.41$, $127.35,126.76,126.73,126.63,124.29,123.77,122.32,122.30,115.01,108.60,73.61,69.30,68.1731 .95,30.37,29.78,29.76,29.74$, 29.69, 29.67, 29.60, 29.43, 29.40, 29.39, 29.33, 28.98, 28.22, 26.11, 26.09, 22.71, 22.49, 14.14, 14.05;

Elemental analysis $\left(\mathrm{C}_{89} \mathrm{H}_{130} \mathrm{O}_{8} \mathrm{~S}, \mathrm{M}=1360.04\right)$ - Calculated: $\mathrm{C}(78.60 \%), \mathrm{H}(9.63 \%)$; Found: $\mathrm{C}(78.72 \%), \mathrm{H}(9.78 \%)$;
HRMS (TOF) $\mathrm{m} / \mathrm{z}$ for $\mathrm{C}_{89} \mathrm{H}_{130} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]+$; Calculated: 1381.9384; Found 1381.9399;

## Compound 3 (with $R=\mathrm{C}_{6} \mathrm{H}_{13}$ )

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 8.24(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.71-7.66(6 \mathrm{H}, \mathrm{m}), 7.58(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.42(2 \mathrm{H}, \mathrm{s}), 7.29-7.22(6 \mathrm{H}, \mathrm{m}), 6.99(2 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 4.09-4.00(8 \mathrm{H}, \mathrm{m}), 1.88-1.72(8 \mathrm{H}, \mathrm{m}), 1.56-1.45(8 \mathrm{H}, \mathrm{m}), 1.43-1.22(76 \mathrm{H}, \mathrm{m}), 0,92(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}) 0.89-0.86(12 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 165.12,165.01,159.64,153.01,150.48,146.12,143.10,142.91,132.10,131.10,130.78,128.42,127.36$, $126.77,126.74,126.65,124.29,123.78,122.33,122.31,115.02,108.61,73.62,69.31,68.20,31.96,31.62,30.38,29.79,29.77,29.75,29.71$, 29.70, 29.67, 29.61, 29.43, 29.41, 29.40, 29.33, 29.25, 26.12, 26.09, 25.76, 22.72, 22.64, 14.15, 14.04;

Elemental analysis ( $\mathrm{C}_{90} \mathrm{H}_{132} \mathrm{O}_{8} \mathrm{~S}, \mathrm{M}=1374.07$ ) - Calculated: $\mathrm{C}(78.67 \%), \mathrm{H}(9.68 \%)$; Found: $\mathrm{C}(78.54 \%), \mathrm{H}(9.60 \%)$;
HRMS (TOF) m/z for $\mathrm{C}_{90} \mathrm{H}_{132} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]+$; Calculated: 1395.9541; Found 1395.9518;

Compound 4 (with $\mathrm{R}=\mathrm{C}_{8} \mathrm{H}_{17}$ )
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 8.24(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.72-7.67(6 \mathrm{H}, \mathrm{m}), 7.60(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.42(2 \mathrm{H}, \mathrm{s}), 7.29(2 \mathrm{H}, \mathrm{s}), 7.25-7.22(4 \mathrm{H}$, $\mathrm{m})$, $7.00(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}), 4.09-4.00(8 \mathrm{H}, \mathrm{m}), 1.88-1.72(8 \mathrm{H}, \mathrm{m}), 1.54-1.44(8 \mathrm{H}, \mathrm{m}), 1.41-1.24(80 \mathrm{H}, \mathrm{m}), 0.92-0.86(12 \mathrm{H}, \mathrm{m})$;
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 165.08,164.98,159.61,152.97,150.46,146.09,143.07,142.90,142.88,132.06,131.91,130.75,128.38$, $127.32,126.73,126.70,126.61,124.26,123.75,122.30,122.27,114.99,108.58,73.58,69.28,68.17,31.93,30.35,29.74,29.71,29.67$, 29.64, 29.58, 29.40, 29.37, 29.34, 29.30, 29.25, 26.09, 22.69, 14.11;

Elemental analysis ( $\mathrm{C}_{92} \mathrm{H}_{136} \mathrm{O}_{8} \mathrm{~S}, \mathrm{M}=1402.12$ ) - Calculated: $\mathrm{C}(78.81 \%), \mathrm{H}(9.78 \%)$; Found: $\mathrm{C}(78.95 \%), \mathrm{H}(9.84 \%)$;
Compound 5 (with $R=\mathrm{C}_{11} \mathrm{H}_{23}$ )
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 8.25(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.72-7.67(6 \mathrm{H}, \mathrm{m}), 7.60(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.42(2 \mathrm{H}, \mathrm{s}), 7.29(2 \mathrm{H}, \mathrm{s}), 7.25-7.22(4 \mathrm{H}$, $\mathrm{m}), 7.01(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 4.09-4.00(8 \mathrm{H}, \mathrm{m}), 1.88-1.72(8 \mathrm{H}, \mathrm{m}), 1.55-1.44(8 \mathrm{H}, \mathrm{m}), 1.41-1.24(86 \mathrm{H}, \mathrm{m}), 0.92-0.86(12 \mathrm{H}, \mathrm{m})$;
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 165.08,164.98,159.61,152.98,150.46,146.09,143.07,142.88,132.06,131.92,130.75,128.39,127.32$, $126.73,126.71,126.61,124.26,123.75,122.27,114.99,108.58,73.59,69.28,68.17,31.93,31.82,30.35,29.71,29.67,29.64,29.58,29.71$, 29.68, 29.64, 29.58, 29.40, 29.37, 29.30, 29.25, 26.09, 22.69, 14.11;

Elemental analysis ( $\mathrm{C}_{95} \mathrm{H}_{142} \mathrm{O}_{8} \mathrm{~S}, \mathrm{M}=1444.20$ ) - Calculated: $\mathrm{C}(79.01 \%), \mathrm{H}(9.91 \%)$; Found: $\mathrm{C}(78.90 \%), \mathrm{H}(9.96 \%)$;
Compound 6 (with $R=(R) \mathrm{CH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{C}_{5} \mathrm{H}_{11}$ )
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 8.24(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.72-7.67(6 \mathrm{H}, \mathrm{m}), 7.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.42(2 \mathrm{H}, \mathrm{s}), 7.29(2 \mathrm{H}, \mathrm{s}), 7.25-7.22(4 \mathrm{H}$, $\mathrm{m}), 6.99(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 4.28-4.20(1 \mathrm{H}, \mathrm{m}), 4.09-4.04(6 \mathrm{H}, \mathrm{m}), 1.88-1.59(10 \mathrm{H}, \mathrm{m}), 1.53-1.43(8 \mathrm{H}, \mathrm{m}), 1.41-1.22(76 \mathrm{H}, \mathrm{m}), 0.98(3 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=7.5 \mathrm{~Hz}), 0.94-0.86(12 \mathrm{H}, \mathrm{m})$;
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 165.11,165.00,159.29,153.00,150.49,146.13,143.10,142.93,142.90,132.08,131.75,130.77,128.46$, $127.30,126.76,126.73,126.60,124.29,123.77,122.32,122.30,116.25,108.60,79.23,73.61,69.30,33.43,32.00,31.94,30.38,29.78$, 29.77, 29.74, 29.71, 29.70, 29.67, 29.61, 29.43, 29.41, 29.40, 29.33, 26.61, 26.12, 26.09, 25.14, 22.72, 22.64, 14.15, 14.06, 9.61 ;

Elemental analysis ( $\mathrm{C}_{92} \mathrm{H}_{136} \mathrm{O}_{8} \mathrm{~S}, \mathrm{M}=1402.12$ ) - Calculated: $\mathrm{C}(78.81 \%), \mathrm{H}(9.78 \%)$; Found: $\mathrm{C}(78.75 \%), \mathrm{H}(9.76 \%)$;
HRMS (TOF) m/z for $\mathrm{C}_{92} \mathrm{H}_{136} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]+$; Calculated: 1423.98541; Found 1423.9829;

## Electronic Supplementary Information

## Additional figures and tables



Figure S1. Wide angle 2D X-ray diffraction patterns taken for compound with $n=6$ in (a) Col $_{\mathrm{h}}$ phase at $\mathrm{T}=180^{\circ} \mathrm{C}$, (b) $I a \overline{3} d$ at $\mathrm{T}=150^{\circ} \mathrm{C}$ and (c) Pcab phase at $\mathrm{T}=110^{\circ} \mathrm{C}$. In all cases diffused signal at high diffraction angle range confirms liquid crystalline character of the phase. (d) 1D XRD patterns obtained by integration of 2D patterns over azimuthal angle. The curves were vertically shifted for clarity of presentation.


Figure S2. DSC thermograms for heating (black) and cooling (red) scans for compound with $n=6$. Arrows mark temperatures of a phase transition detected by the X-ray diffraction studies.


Figure S3. Optically isotropic texture of the cubic $\operatorname{Im} \overline{3} m$ phase of compound with $R=C_{6} H_{13}$; domains showing optical activity are visible under slightly de-crossed polarizers.

## Electronic Supplementary Information

Table S1. Positions ( $q_{\text {exp }}$ and $d_{\text {exp }}$ ) and relative intensities ( $I$ ) of XRD signals recorded in the Pcab phase, their Miller indices ( $h k l$ ) and calculated positions ( $q_{\text {calc }}$ and $d_{\text {calc }}$ ).

| $q_{\text {exp }} / \AA^{-1}$ | $d_{\text {exp }} / \AA$ | $I$ | ( $h k l$ ) | $q_{\text {calc }} / \AA^{-1}$ | $d_{\text {calc }} / \AA$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.09159 | 68.60 | 0.03 | (002) | 0.09121 | 68.89 |
| 0.09313 | 67.47 | 0.19 | (200) | 0.09326 | 67.37 |
| 0.1043 | 60.23 | 1.22 | (012) | 0.1041 | 60.38 |
| 0.1106 | 56.82 | 13.27 | (120) | 0.1105 | 56.84 |
| 0.1141 | 55.08 | 87.73 | (112) | 0.1140 | 55.10 |
| 0.1153 | 54.48 | 100 | (211) | 0.1153 | 54.51 |
| 0.1197 | 52.51 | 69.71 | (121) | 0.1196 | 52.55 |
| 0.1304 | 48.18 | 18.52 | (202) | 0.1305 | 48.16 |
| 0.1356 | 46.34 | 7.03 | (022) | 0.1355 | 46.37 |
| 0.1368 | 45.92 | 8.89 | (220) | 0.1369 | 45.90 |
| 0.1398 | 44.95 | 1.06 | (212) | 0.1398 | 44.96 |
| 0.1437 | 43.72 | 1.90 | $\begin{aligned} & (122) \\ & (221) \end{aligned}$ | $\begin{aligned} & 0.1433 \\ & 0.1443 \end{aligned}$ | $\begin{aligned} & 43.84 \\ & 43.54 \end{aligned}$ |
| 0.1534 | 40.97 | 1.32 | (113) | 0.1530 | 41.07 |
| 0.1553 | 40.45 | 0.17 | (311) | 0.1554 | 40.42 |
| 0.1644 | 38.23 | 0.16 | (131) | 0.1639 | 38.34 |
|  |  |  | (222) | 0.1645 | 38.20 |
| 0.1659 | 37.88 | 0.17 | (203) | 0.1656 | 37.95 |
| 0.1725 | 36.42 | 0.02 | (320) | 0.1721 | 36.51 |
| 0.1725 | 36.42 | 0.02 | (213) | 0.1730 | 36.32 |
| 0.1762 | 35.68 | 0.16 | (032) | 0.1758 | 35.73 |
|  |  |  | (123) | 0.1759 | 35.72 |
| 0.1827 | 34.41 | 0.34 | (004) | 0.1824 | 34.44 |
| 0.1827 | 34.41 | 0.34 | (231) | 0.1827 | 34.39 |
| 0.1935 | 32.47 | 0.30 | (223) | 0.1936 | 32.46 |
| 0.1952 | 32.19 | 0.06 | (322) | 0.1948 | 32.26 |
| 0.1952 |  |  | (114) | 0.1948 | 32.25 |
| 0.2010 | 31.26 | 0.37 | (040) | 0.2005 | 31.34 |
| 0.2010 |  |  | (313) | 0.2020 | 31.11 |
|  |  |  | (331) | 0.2104 | 29.87 |
| 0.2109 | 29.82 | 0.16 | (141) | 0.2108 | 29.81 |
| 0.2109 | 29.82 |  | (214) | 0.2109 | 29.79 |
|  |  |  | (420) | 0.2118 | 29.67 |
| 0.2197 | 28.57 | 0.10 | (323) | 0.2198 | 28.58 |
| 0.2211 | 28.42 | 0.15 | (240) | 0.2211 | 28.42 |
| 0.2294 | 27.38 | 0.13 | (224) | 0.2281 | 27.55 |
|  |  |  | (422) | 0.2306 | 27.25 |
| 0.2447 | 25.67 | 0.03 | (340) | 0.2444 | 25.71 |
| 0.2486 | 25.27 | 0.11 | (341) | 0.2486 | 25.27 |

Table S2. Positions ( $q_{\text {exp }}$ and $d_{\text {exp }}$ ) and relative intensities ( $I$ ) of XRD signals recorded in the $I a \overline{3} d$ phase, their Miller indices ( $h k l$ ) and calculated positions ( $q_{\text {calc }}$ and $d_{\text {calc }}$ ).

| $q_{\text {exp }} / \AA^{-1}$ | $d_{\text {exp }} / \AA$ | $I$ | $(h k l)$ | $q_{\text {calc }} / \AA^{-1}$ | $d_{\text {calc }} / \AA$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.1206 | 52.10 | 100 | $(211)$ | 0.1206 | 52.11 |
| 0.1391 | 45.18 | 13.70 | $(022)$ | 0.1392 | 45.13 |
| 0.1841 | 34.13 | 0.10 | $(321)$ | 0.1842 | 34.11 |
| 0.1968 | 31.93 | 0.32 | $(004)$ | 0.1969 | 31.91 |
| 0.2204 | 28.50 | 0.31 | $(042)$ | 0.2201 | 28.54 |
| 0.2411 | 26.06 | 0.12 | $(422)$ | 0.2412 | 26.05 |
| 0.2507 | 25.06 | 0.20 | $(431)$ | 0.2510 | 25.03 |
| 0.2784 | 22.57 | 0.02 | $(044)$ | 0.2785 | 22.56 |
| 0.3037 | 20.69 | 0.08 | $(532),(611)$ | 0.3034 | 20.70 |
| 0.3476 | 18.08 | 0.08 | $(543)$ | 0.3481 | 18.05 |

Table S3. Positions ( $q_{\text {exp }}$ and $d_{\text {exp }}$ ) and relative intensities (I) of XRD signals recorded in Im $\overline{3} m$ phase, their Miller indices ( $h k l$ ) and calculated positions ( $q_{c a l c}$ and $d_{c a l c}$ ).

| $q_{\exp } / \AA^{\text {A }} 1$ | $d_{\text {exp }} / \AA$ | $I$ | (hkl) | $q_{\text {calc }} / \AA^{-1}$ | $d_{\text {calc }} / \AA$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.04421 | 142.11 | 0.01 | (011) | 0.04409 | 142.52 |
| 0.07636 | 82.28 | 0.17 | (211) | 0.07636 | 82.28 |
| 0.08833 | 71.13 | 0.10 | (022) | 0.08817 | 71.26 |
| 0.09863 | 63.70 | 0.85 | (031) | 0.09858 | 63.74 |
| 0.1080 | 58.15 | 2.56 | (222) | 0.1080 | 58.18 |
| 0.1166 | 53.86 | 100 | (321) | 0.1166 | 53.87 |
| 0.1247 | 50.39 | 25.71 | (004) | 0.1247 | 50.39 |
| 0.1323 | 47.51 | 2.98 | (033) | 0.1322 | 47.51 |
| 0.1394 | 45.08 | 6.76 | (042) | 0.1394 | 45.07 |
| 0.1527 | 41.15 | 0.52 | (422) | 0.1527 | 41.14 |
| 0.1589 | 39.54 | 1.26 | (051), (431) | 0.1590 | 39.53 |
| 0.1707 | 36.81 | 0.12 | (521) | 0.1707 | 36.80 |
| 0.1762 | 35.67 | 0.02 | (044) | 0.1764 | 35.63 |
| 0.1817 | 34.58 | 0.22 | (433), (053) | 0.1818 | 34.57 |
| 0.1870 | 33.61 | 0.07 | (006), (442) | 0.1871 | 33.59 |
| 0.1921 | 32.71 | 0.21 | (532), (611) | 0.1922 | 32.70 |
| 0.1970 | 31.89 | 0.01 | (062) | 0.1972 | 31.87 |
| 0.2019 | 31.12 | 0.08 | (541) | 0.2020 | 31.10 |
| 0.2112 | 29.75 | 0.05 | (631) | 0.2114 | 29.72 |
| 0.2159 | 29.10 | 0.02 | (444) | 0.2160 | 29.09 |
| 0.2250 | 27.93 | 0.03 | (064) | 0.2248 | 27.95 |
| 0.2289 | 27.45 | 0.06 | $\begin{gathered} (552),(633) \\ (721) \end{gathered}$ | 0.2291 | 27.43 |
| 0.2330 | 26.97 | 0.01 | (642) | 0.2333 | 26.93 |
| 0.2453 | 25.61 | 0.02 | (732), (651) | 0.2454 | 25.60 |
| 0.2531 | 24.82 | 0.02 | $\begin{gathered} (811),(741), \\ (554) \end{gathered}$ | 0.2532 | 24.81 |
| 0.2680 | 23.45 | 0.03 | $\begin{gathered} (075),(831) \\ (743) \end{gathered}$ | 0.2682 | 23.43 |

Table S4. Experimentally obtained intensities (in arbitrary units) for the X-ray peaks with Miller indices ( $h, k, l$ ) for the $I a \overline{3} d\left(I_{\text {Ia3d }}\right)$ and $P c a b\left(I_{P c a b}\right)$ phases, multiplicity of the peaks $\left(M_{I a 3 d}\right.$ and $\left.M_{P c a b}\right)$, their relative amplitudes $\left(F_{I a 3 d}\right.$ and $\left.F_{P c a b}\right), 1$ being assigned to the highest amplitude, and the phases $(\phi)$ of the peaks in the $I a \overline{3} d$ phase. The data for the Pcab phase is given at two temperatures, $113{ }^{\circ} \mathrm{C}$ and $93^{\circ} \mathrm{C}$, denoted by (1) and (2), respectively. The unit cell dimensions are $13.47 \times 12.54 \times 13.78 \mathrm{~nm}^{3}$ in case (1) and $13.90 \times 12.59 \times 14.11 \mathrm{~nm}^{3}$ in case (2). In the $I a \overline{3} d$ phase, the unit cell length is 12.76 nm .

| ( $h, k, l)$ | $M_{\text {Ia3d }}$ | $I_{\text {Ia3d }}$ [au] | $\phi$ | $F_{\text {Ia3d }}$ | $M_{\text {Pcab }}$ | $I_{\text {Pcab }}^{(1)}$ | $F_{\text {Pcab }}^{(1)}$ | $I_{\text {Pcab }}^{(2)}$ | $F_{\text {Pcab }}^{(2)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(1,2,0)$ | / | / | / | / | 4 | 3.0 | 0.50 | 2.9 | 0.48 |
| $(1,1,2)$ | 24 | 10.2 | $\pi$ | 1 | 8 | 18.2 | 0.87 | 19.7 | 0.89 |
| $(2,1,1)$ |  |  |  |  | 8 | 24.3 | 1 | 25.1 | 1 |
| $(1,2,1)$ |  |  |  |  | 8 | 16.6 | 0.83 | 17.8 | 0.84 |
| $(2,0,2)$ | 12 | 1.15 | $\pi$ | 0.48 | 4 | 4.0 | 0.57 | 5.6 | 0.67 |
| $(0,2,2)$ |  |  |  |  | 4 | 1.5 | 0.35 | 2.5 | 0.45 |
| $(2,2,0)$ |  |  |  |  | 4 | 1.8 | 0.39 | 1.7 | 0.37 |
| $(3,2,1)$ | 48 | 0.01 | 0 | 0.02 | / | / | / | / | / |
| $(0,0,4)$ | 6 | 0.04 | $\pi$ | 0.12 | / | / | / | / | / |

