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Table S1 Characteristic scales of system physical variables

Physical variable Characteristic Scale

r∗ a = εL
z∗ L
r̄∗ A = γL

v∗r
Q

πεL2

v∗z
Q

Areain
=

Q
πε2L2

p∗f
µQ

πε4L3

p∗w
µQ

πε4L3 + p∗0 =
µQ(1+ p0)

πε4L3

u∗r̄ ,u
∗
z θa = θεL

S1 Governing Equations and Boundary Conditions

We discuss the flow modelling first. We consider a constant density Newtonian fluid undergoing steady
fully-developed flow. With these assumptions, the governing equations for the flow dynamics are,
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+
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+
∂v∗z
∂ z∗

= 0, (S1)
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We non-dimensionalized the governing equations as per the scales presented in table S1. Retaining
only leading ordered terms, the governing equations are,

∂vr

∂ r
+

vr

r
+

∂vz

∂ z
= 0, (S4)

S1

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2020



Fig. S1 Photographs of SmG channel profile at inlet (left), midpoint (center) and outlet (right) at flow-rates of

zero (top), 2500 µL/min (mid) and 7500 µL/min (bottom).
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0 =
∂ p f

∂ r
, (S5)

0 =−
∂ p f

∂ z
+

∂ 2vz

∂ r2 . (S6)

These equations are subject to the boundary conditions,

p = 0, at z = 1, (S7)

vr = vz = 0, at r = 1+θ∆, (S8)

Solving equations (S4) to (S6) following procedure similar to that for Poiseuille flow, the solution for
vz is,

vz =
1
4

d p f

dz

[
(1+θ∆)2− r2] . (S9)

To get the equation for pressure, we invoke the condition of flow rate being constant across different
cross sections, i.e.,

Q =
∫ a+∆∗

0
2πr∗v∗z dr∗ =⇒ 1 = 2

∫ 1+θ∆

0
vzrdr. (S10)

Subsequent algebra yields equation (1) in the main document, which is subjected to boundary condi-
tion S7 (re-iterated as equation (3) in the main document).
For the substrate deformation, the governing equation is the mechanical equilibrium equation, given
as,

∇̄
∗ ·σ∗ = 0, (S11)

where the Cauchy-Green stress tensor, σ∗ is,

σ
∗ = λ tr

(
E∗
)
+2GE∗, (S12)

and, E∗ is the infinitesimal strain tensor, given as,

E∗ =
1
2
[
∇
∗~u∗+(∇∗~u∗)T ] , (S13)

and ∇̄∗ is the gradient operator in the cylindrical co-ordinate system r̄∗-z∗-φ 1, with axisymmetry, i.e.
∂

∂φ
≡ 0, and zero φ -component, i.e. Γφ = 0 for any general vector ~Γ.

Plugging equation (S13) into equation (S12) and then equation (S12) into equation (S11) yields
the two equations that are the r̄∗-deformation and the z∗-deformation governing equations. These
equations are then non-dimensionalized with the scales given in S1, giving us,(
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Equations (S14) and (S15) are subjected to the traction balance boundary conditions at the channel
wall, non-dimensionalized versions of which are,
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at r̄ =
ε

γ
, and the far-end zero-displacement condition, i.e.,

ur̄ = uz = 0 at r̄ = 1. (S18)

For the setup that we are studying, the channel is significantly longer than its radius. Therefore, we
consider the depth of deformation, A to be much smaller than L, i.e. γ � 1. Equations (S14) to (S17)
thus simplify to,
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Equations (S19) and boundary condition (S21) indicate that r̄-deformation is de-coupled from z-
deformation and is analytically solvable. Furthermore, since the substrate deformation is dominant
in the radial direction and is caused by fluid pressure, the LHS and RHS of equation (S21), which
signify the force at the channel wall from the fluid and solid sides, should scale equal. This gives the
expression for θ as presented in equation (7) in the main document. The solution for ur̄ is obtained
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as,
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Substituting r̄ =
ε

γ
in equation (S23) gives the expression for deflection ∆ as,
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Furthermore, for the setup we are studying, the substrate thickness, R− a, is much larger than the
channel undeformed radius, a. As a result, the substrate can be approximated as an infinite medium
in comparison to the channel radius, i.e. A� a =⇒ γ � ε. Hence, equations (S23) and (S24) can be
approximated as,
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ε2(λ0 +2G0)

2γ2G

[
1
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− r̄
]

pw, (S25)

∆ =
ε(λ0 +2G0)

2γG
pw. (S26)

which is re-iterated in the main text as equation 2 in the main document.
Summarily, in our theoretical analysis, we have assumed fully-developed flow in the channel and
ε � γ � 1 to simplify and solve the governing equations and boundary conditions.

S2 Newton-Raphson Method to Compute the Analytical Solution for pw and ∆

Equations (1), (3) and (2) in the main document are coupled and are solved using a Newton-Raphson
root-finding method. For employing this method, the equations are first discretized using a finite-
difference scheme. The z-axis is uniformly divided into n points. The discretized versions of equations
(1), (3) and (2) are,

(1+θ∆i)
4 ∂ pw

∂x
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i
+

8
1+ p0

= 0 for i = 1 : n−1 (S27)

pw =
p0

1+ p0
for i = n (S28)

∆i = Ki pw,i for i = 1 : n (S29)

The multi-variable Newton-Raphson method for solving non-linear system of algebraic equation em-
ploys a Jacobian matrix J and a residual array R. For equations (S27) to (S29) that have 2n unknowns
(n discrete values of pw and n discrete values of ∆), J is a 2n× 2n matrix and R is a 2n array. The
non-zero entries of R and J are presented in the following equations.
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Jn,n = 1 (S37)

Rn+i = ∆i−Ki pw,i for i = 1 : n (S38)

Jn+i,n+i = 1 for i = 1 : n (S39)

Jn+i,i =−Ki for i = 1 : n (S40)

The solution for pw and ∆ are obtained by iterating over,

pw,i = pw,i−
(
J−1R

)
i , (S41)

∆i = ∆i−
(
J−1R

)
n+i , (S42)

till ||R|| is smaller than a prescribed tolerance.

S3 Young’s modulus characterization of PDMS samples

For the theoretical computations, we require the Young’s modulus and Poisson’s ratio of the substrate
material. Since PDMS is nearly-incompressible, we take the Poisson’s ratio to be 0.49 for the theoret-
ical computations (the analytical scheme does not allow for Poisson’s ratio to be taken as exactly 0.5
because the value of λ for ν = 0.5 is ∞). For the Young’s modulus, we conduct extensional testing of
slender samples of cross-section 1.5 mm × 4.5 mm and length 10 mm cut out from six equally-spaced
locations in the SmG setup. Each sample is stretched uniaxially and the force and extension mea-
surements give the Young’s modulus of the sample. Since we assume the cross-linking ratio to vary
linearly along the channel length for SmG, the obtained Young’s modulus for the six samples gives
us six data points for the variation of Young’s modulus with cross-linking ratio. We fit a power-law
variation of the form,

Ey = E0c−n (S43)

on this data set. Ey is the Young’s modulus and c is the cross-linking ratio. The values of E0 and n are
obtained as 410 MPa and 2.235 respectively. We present the data points, the variation as per equation
(S43), and three sets of variation of Young’s modulus with cross-linking ratio as presented by Wang
et al. 2 in figure S2.
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Fig. S2 Young’s modulus variation with cross-linking ratio as per the power-Law fit in equation (S43) (solid

black line), as obtained for the five samples in extensional test (black circle markers), as obtained in compression

measurements by Wang et al. 2 (green dashed line), as obtained in tension measurements by Hanson et al. 3 and

presented in Wang et al. 2 (dashed-dot maroon line), and as obtained in compression measurements by Young and

Lovell 4 and presented in Wang et al. 2 (dotted pink line); the plot is logarithmic-scaled in both axes

S4 Theoretical analysis of the four cases - SmG, StG, SHS and HSH

The different aspects of flow and deformation in a soft microchannel can have distinctive implications
depending on the specific application on hand. A possible application is shape control of microchan-
nels, which is useful in studying rheology and species transport5–13, demanding commensurate un-
derstanding of the deformation and flow. Other future scopes of microchannel elastohydrodynamics
include its coupling with additional physical effects like electrokinetics, hydrophobicity and deviation
from continuum14–20. Keeping these aspects in view, we analyse here the essential physical perspec-
tives of elastohydrodynamics of the four setups studied in this work - SmG, StG, SHS and HSH, as
obtained from our theoretical analysis.
We discuss SmG first. The trends for different system variables are presented in figure S3. In figure
S3a, the variations of cross linking ratio and Young’s modulus along the channel length are pre-
sented. The cross-linking ratio varies linearly from inlet to outlet as a result of significant diffusion
due to slow solidification in ambient temperature. Variation of Young’s modulus with cross-linking
ratio is discussed in section S3. Variation of pressure gauged with atmospheric (i.e. variation of p∗w)
along channel length for the different flow rates is presented in figure S3b. As expected, pressure is
higher for higher flow rates. The pressure profile can be seen to deviate slightly from linear, with the
derivation being higher for higher flow rates. This is the outcome of wall deflection, which results
in different radius at different cross-sections. The outlet pressure (i.e. p∗w at z∗ = 5 cm) is higher for
higher flow rates, and exhibits a linear variation with flow rate. The outlet pressure (and thus the
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Fig. S3 For SmG, (a) axial variation of Young’s modulus (solid blue line, left vertical axis) and cross-linking ratio

(dotted red line, right vertical axis), (b) axial variation of pressure (gauged with atmospheric) for the different flow

rates, (c) variation with flow rate of ratio of pressure drop over channel to the pressure drop over a counterpart rigid

channel, (d) variation with flow rate of ratio of pressure drop over channel to outlet pressure gauged with atmospheric

pressure, (e) profile of axial flow velocity in the channel along radial distance at the mid cross-section (i.e. at z∗ = 2.5
cm), (f) profile of radial substrate deformation along radial distance at the mid cross-section (i.e. at z∗ = 2.5 cm),

(g) surface map of shear strain rate

(
∂v∗z
∂ r∗

)
in the channel for the flow rate of 7500 µL/min, and (h) surface map

of extensional strain rate

(
∂v∗z
∂ z∗

)
in the channel for the flow rate of 7500 µL/min.
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Fig. S4 For StG, (a) axial variation of Young’s modulus (solid blue line, left vertical axis) and cross-linking ratio

(dotted red line, right vertical axis), (b) axial variation of pressure (gauged with atmospheric) for the different flow

rates, (c) variation with flow rate of ratio of pressure drop over channel to the pressure drop over a counterpart rigid

channel, (d) variation with flow rate of ratio of pressure drop over channel to outlet pressure gauged with atmospheric

pressure, (e) profile of axial flow velocity in the channel along radial distance at the mid cross-section (i.e. at z∗ = 2.5
cm), (f) profile of radial substrate deformation along radial distance at the mid cross-section (i.e. at z∗ = 2.5 cm),

(g) surface map of shear strain rate

(
∂v∗z
∂ r∗

)
in the channel for the flow rate of 7500 µL/min, and (h) surface map

of extensional strain rate

(
∂v∗z
∂ z∗

)
in the channel for the flow rate of 7500 µL/min.

S11



pressure through the channel) is of the order of 10-100 kPa. In figure S3d, the pressure drop over the
channel in comparison to the outlet pressure gauged with atmospheric (which is simply the pressure
head due to the drainage tube) for different flow rates is presented. The values indicate that the
pressure drop over the channel and pressure head due to drainage tube are of the same order. This
implies that the drainage tube pressure head has significant contribution to the channel wall deflec-
tion. Also, while this ratio is expected to be constant for a rigid channel, the obtained ratio is smaller
for higher flow rates, a consequence of channel deformation. Variation of the ratio of pressure drop
over the channel to pressure drop over an analogous rigid channel with the three different flow rates
is presented in figure S5c. This ratio is always smaller than unity, i.e., the pressure drop over the
deformed channel is always lower than the rigid counterpart. Furthermore, this ratio is smaller for
larger flow rate, an outcome of higher wall deflection at larger flow rate. In figure S3e, the velocity
profile at the mid cross-section (i.e. at z∗ = 2.5 cm) is presented. The velocities are of the order of 1
m/s. In figure S3f, the substrate deformation in the substrate bulk at z∗ = 2.5 cm is presented. Both
the axes are logarithmic-scaled. The deformation reduces to smaller than 1 µm for all flow rates at
the radial distance of ∼0.2 cm, which is considerably less than the geometric bound of the fabricated
micro-channels, ∼0.5 cm. At the radial distance of ∼0.5 cm, the radial deformation reduces to smaller
than ∼0.1 µm. Hence, the assumption of infinitely-bound substrate for the current study’s theoretical
modelling can be deemed appropriate. In figures S3g and S3h, surface maps for shear strain rate and
extensional strain rate in the microchannel are respectively presented. As expected, the shear strain
rate varies from zero at the channel centreline to its maximum value at the channel wall, with the
magnitude being ∼ 104 s−1. This amounts to shear stress of magnitude ∼10 Pa at the channel wall. In
comparison, the extensional strain rate is much lower at ∼ 101 s−1.
We discuss StG next, presented in figure S4. In figure S4a, the variation of cross linking ratio can be
seen to be stepped along the channel length, the result of arrested diffusion due to quick solidification
at elevated temperature. Resultantly, the Young’s modulus is also stepped. The range of cross-linking
ratio and Young’s modulus is however same as that for SmG (figure S3a). The next six panels, i.e. fig-
ures S4b to S4g, are qualitatively same as and quantitatively approximate to their SmG counterparts,
figures S3b to S3g respectively. However, in figure S4h, we observe the effect of the stepped nature
of channel wall deflection, which leads the extensional strain rate to exhibit higher positive as well as
negative magnitudes and sharper variations at the location of the steps.

The counterpart trends for SHS, presented in figure S5, are also similar to those for SmG, except for
the figures S5a, S5g and S5h. In figure S5a, the cross-linking ratio has a dip at the channel centre,
leading to a spike in Young’s modulus there. The shear strain rate (figure S5g) is similar to that for
SmG (figure S3g) and has similar magnitude. However, a fairly discernible patch is visible in the
middle of the channel, where the shear strain rate is higher in magnitude than on either side. On the
other hand, the extensional strain rate for SHS (figure S5h) can be seen to be an order of magnitude
higher than SmG (figure S3h), as well as have a significantly different profile. More specifically, as the
fluid flows from inlet to outlet, it undergoes significant extension followed by significant contraction
at the two ends of the central thin strip.
Lastly, the trends for HSH, presented in figure S6, are also similar to those for SmG, except for the
figures S6a, S6g and S6h. These three panels, i.e. figures S6a, S6g and S6h, are simply the converse
of their counterparts for SHS, figures S5a, S5g and S5h respectively.
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Fig. S5 For SHS, (a) axial variation of Young’s modulus (solid blue line, left vertical axis) and cross-linking ratio

(dotted red line, right vertical axis), (b) axial variation of pressure (gauged with atmospheric) for the different flow

rates, (c) variation with flow rate of ratio of pressure drop over channel to the pressure drop over a counterpart rigid

channel, (d) variation with flow rate of ratio of pressure drop over channel to outlet pressure gauged with atmospheric

pressure, (e) profile of axial flow velocity in the channel along radial distance at the mid cross-section (i.e. at z∗ = 2.5
cm), (f) profile of radial substrate deformation along radial distance at the mid cross-section (i.e. at z∗ = 2.5 cm),

(g) surface map of shear strain rate

(
∂v∗z
∂ r∗

)
in the channel for the flow rate of 7500 µL/min, and (h) surface map

of extensional strain rate

(
∂v∗z
∂ z∗

)
in the channel for the flow rate of 7500 µL/min.

S14



(a) (b)

(c) (d)

S15



(e) (f)

0

1

2

10
4

(g)

-200

0

200

(h)

Fig. S6 For HSH, (a) axial variation of Young’s modulus (solid blue line, left vertical axis) and cross-linking ratio

(dotted red line, right vertical axis), (b) axial variation of pressure (gauged with atmospheric) for the different flow

rates, (c) variation with flow rate of ratio of pressure drop over channel to the pressure drop over a counterpart rigid

channel, (d) variation with flow rate of ratio of pressure drop over channel to outlet pressure gauged with atmospheric

pressure, (e) profile of axial flow velocity in the channel along radial distance at the mid cross-section (i.e. at z∗ = 2.5
cm), (f) profile of radial substrate deformation along radial distance at the mid cross-section (i.e. at z∗ = 2.5 cm),

(g) surface map of shear strain rate

(
∂v∗z
∂ r∗

)
in the channel for the flow rate of 7500 µL/min, and (h) surface map

of extensional strain rate

(
∂v∗z
∂ z∗

)
in the channel for the flow rate of 7500 µL/min.
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Based on detailed theoretical computations for these setups, a couple of key inferences are established.
First, the pressure drop over a channel gets reduced as an outcome of the channel’s deformation, an
effect that is more pronounced for higher flow rates. This finding is in tandem with former microchan-
nel FSI studies21–23. Second, the pressure-head developed due to flow through the drainage tube has
non-trivial contribution to channel deformation. This is unique to microchannels having walls with
graded elasticity, specially with softer outlet than inlet, and is not observed in channels with spatially
homogeneous elastic properties21.
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