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I. PERTURBATION THEORY FOR THE TWO
DROPLETS PROBLEM

Suppose now there are two spherical particles, labeled
here by Roman numerals I and II, and positioned in
points rI and rII . We need to find steady state con-

centration distributions c
(2)
A (r|rI , rII) and c

(2)
B (r|rI , rII)

through all points r in space. The intuition is that
when particles are far apart compared at their own sizes,
|rI − rII | � R, the solution for the two particles problem
should be somehow approximated by the superposition of
single particle solutions. To formalize this idea, we first
of all define δc for the two-particles and single particle
concentration profiles as the quantities that vanish in in-
finity, according to

δc
(2)
A (r|rI , rII) = cA(r|rI , rII)− cA, (1a)

δc
(1)
A (r|rI) = cA(r|rI)− cA, (1b)

δc
(1)
A (r|rII) = cA(r|rII)− cA , (1c)

with similar notation also for B. Upper indices (1) or
(2) indicate solution for one or two particles, respectively.
And now we define δδc encapsulating the idea of superpo-
sition; it is actually the difference between exact solution
and superposition:

δc
(2)
A (r|rI , rII) = δc

(1)
A (r|rI) + δc

(1)
A (r|rII)

+ δδc
(2)
A (r|rI , rII)

(2a)

δc
(2)
B (r|rI , rII) = δc

(1)
B (r|rI) + δc

(1)
B (r|rII)

+ δδc
(2)
B (r|rI , rII)

(2b)

For now, this is nothing more than just a notation, the
definition of δδc; our goal is now to estimate these func-
tions and to claim that they can be neglected. To do
so, we derive, rigorously, equations and boundary con-
ditions satisfied by these functions; we will write all of
them in a standard way, with left hand side in every case
representing a linear function of δδc, and right hand side
representing inhomogeneity:

1. Diffusion equations for A and for B:

∇2δδc
(2)
A (r|rI , rII) = 0 , (3a)

∇2δδc
(2)
B (r|rI , rII) = 0 . (3b)

2. Vanishing in infinity:

δδc
(2)
A (r|rI , rII)

∣∣∣
r→∞

= 0 , (3c)

δδc
(2)
B (r|rI , rII)

∣∣∣
r→∞

= 0 (3d)

3. Diffusion influx of A continuously connects to
chemical transformation flux. For notational sim-
plicity we introduce here rate catalytical rate

constants kAB = (1/τ)eβ(εA−ε†) and kBA =

(1/τ)eβ(εB−ε†). This flux continuity condition
must be satisfied in every point on the surface of
both particles; for brevity, we write this condition
only for one particle, particle II, where we specify
an arbitrary point r = rII + R by a vector R with
absolute value R:

DA∇⊥δδc(2)A (r|rI , rII)
∣∣∣
r=rII+R

−

−kABδδc(2)A (r|rI , rII)
∣∣∣
r=rII+R

+

+kBAδδc
(2)
B (r|rI , rII)

∣∣∣
r=rII+R

=

= −DA∇⊥δc(1)A (r|rI)
∣∣∣
r=rII+R

+

kABδc
(1)
A (r|rI)

∣∣∣
r=rII+R

+

−kBAδc(1)B (r|rI)
∣∣∣
r=rII+R

(3e)

There is also a similar condition for particle I which
we do not write for brevity.

4. Similarly to the above, diffusion outflux of B con-
tinuously connects to chemical transformation flux.
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Again for particle II we have:

DB∇⊥δδc(2)B (r|rI , rII)
∣∣∣
r=rII+R

−

kABδδc
(2)
A (r|rI , rII)

∣∣∣
r=rII+R

+

−kBAδδc(2)B (r|rI , rII)
∣∣∣
r=rII+R

=

= −DB∇⊥δc(1)B (r|rI)
∣∣∣
r=rII+R

+

kABδc
(1)
A (r|rI)

∣∣∣
r=rII+R

+

−kBAδc(1)B (r|rI)
∣∣∣
r=rII+R

(3f)

Equations (3b) through (3f) represent a complete set de-

termining δδc
(2)
A (r|rI , rII) and δδc

(2)
B (r|rI , rII). Inhomo-

geneity in these equations is present only in boundary

conditions (3e, 3f), it comes from δc
(1)
A (r|rI)

∣∣∣
r=rII+R

and

δc
(1)
B (r|rI)

∣∣∣
r=rII+R

– the tails of concentration profiles

created by particle I in the region of particle II. As long
as particles are relatively far apart compared at their
sizes, |rI − rII | � R, for the vicinity of particle II we
should write

δc
(1)
A (r|rI)

∣∣∣
r=rII+R

' δc(1)A (rII |rI)+

+ R · ∇δc(1)A (rII |rI) ,
(4)

and similarly for δc
(1)
B (r|rI)

∣∣∣
r=rII+R

,

δc
(1)
A (r|rII)

∣∣∣
r=rI+R

, and δc
(1)
B (r|rII)

∣∣∣
r=rI+R

. We

should plug this in the boundary conditions (3e, 3f).
The inhomogeneous right hand sides of these boundary
conditions then become sums of two terms each, one
proportional to the value of concentration created by
the seond particle in the center of the first one (and vice

versa), δc
(1)
A (rI |rII) and δc

(1)
B (rI |rII), and another pro-

portional to corresponding gradients, ∇δc(1)A (rI |rII) etc.

Accordingly, we can split the solution for δδc
(2)
A (r|rI , rII)

in the vicinity of particle I into a sum of two terms,

one proportional to concentrations δc
(1)
A (rI |rII) and

δc
(1)
B (rI |rII), and another to gradients, ∇δc(1)A (rI |rII)

and ∇δc(1)B (rI |rII). The former solution is spherically
symmetric around particle I and, therefore, contributes
nothing to the force exerted on this particle. The latter
solution is proportional to gradient and, therefore, its
contribution to the force decays with distance as 1/r3

and should be neglected as such.

Thus, we have justified the idea that every particle is
driven, to the first approximation, by the concentration
gradient generated by the other particle. “Interference”
effect does exist, as the concentration field created by
one sphere is affected by the other sphere, but it be-
comes relevant only in the sub-leading term with respect
to r/R� 1 and it is neglected in this work.


