Supporting Information:

The influence of side-chain conformations on the phase behavior of bottlebrush block polymers

Yuguo Chen¹, Xinghua Zhang²,* and Ying Jiang^{1,3}*

¹*School of Chemistry* & *Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education* & *Center of Soft Matter Physics and Its Applications, Beihang University, Beijing 100191, China*

²*School of Science, Beijing Jiaotong University, Beijing 100044, China,*

³*Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China*

E-mail: zhangxh@bjtu.edu.cn; yjiang@buaa.edu.cn

[∗]To whom correspondence should be addressed

Theoretical formalism of SCFT

Figure S1: Schematic of the bottlebrush diblock polymer chain composed of side chains A (blue), B (red) and the backbone C (black). The grafting points along the backbone are labelled as τ_i , $i = 1, 2, 3, \dots, m$ and the free ends are labelled as τ_0 and τ_{m+1} , respectively.

We consider a system of volume *V*, which is comprised of *n* monodisperse and indistinguishable bottlebrush polymer chains. Each of chain has m side chains including m_A A-chains and $m_B = m - m_A$ B-chains, which uniformly divide the C backbone into $m + 1$ equal segment, as illustrated in Fig.S1. We assume that each monomer on all blocks shares the same statistical length *b* and then occupies the same volume ρ_0^{-1} . The degree of polymerization of side chains A and B is N_A and N_B , while the degree of polymerization of backbone is N_C . Thus, the summed total segment number of a single bottlebrush polymer is $N = m_A N_A + m_B N_B + N_C$. The persistence length for the individual block is λ_{α} , $\alpha = A, B, C$. The volume fraction for each component is calculated by $f_A = m_A N_A/N$, $f_B = m_B N_B/N$, and $f_C = N_C/N$. The *i*th grafting point on the backbone is located at $\tau_i = i \times f_C/(m+1)$, where the grafting point index *i* ranges from 1 to *m*. Then, two remaining free ends of backbone are designated as τ_0 and τ_{m+1} , respectively.

The Helmholtz free energy per chain for multicomponent block copolymers in the mean field approximation¹ can be written as

$$
\frac{F}{nk_{\rm B}T} = -\ln Q + \frac{1}{V} \int d\mathbf{r} \left\{ \sum_{\alpha \neq \beta} N \chi_{\alpha\beta} \phi_{\alpha}(\mathbf{r}) \phi_{\beta}(\mathbf{r}) - \sum_{\alpha} \omega_{\alpha}(\mathbf{r}) \phi_{\alpha}(\mathbf{r}) - \xi(\mathbf{r}) \left[1 - \sum_{\alpha} \phi_{\alpha}(\mathbf{r}) \right] \right\} \tag{1}
$$

The Flory-Huggins parameter $\chi_{\alpha\beta}$ describes the interaction energy between dissimilar species. The average density for species $\phi_\alpha(\mathbf{r})$ which is conjugated to the mean field $\omega_\alpha(\mathbf{r})$ is enforced by the Lagrangian multiplier $\xi(\mathbf{r})$ due to the incompressibility constraint to $\sum_{\alpha} \phi_{\alpha}(\mathbf{r}) = 1$. k_B is the Boltzmann constant and *T* is the temperature of the system. For the wormlike chain model used here, the single chain partition function for bottlebrush copolymers can be computed by

$$
Q = \frac{1}{4\pi V} \int d\mathbf{r} \int d\mathbf{u} q_C(\mathbf{r}, \mathbf{u}, f_C)
$$
 (2)

The backbone propagator $q_C(\mathbf{r}, \mathbf{u}, t)$ represents the probability of finding the *t* terminal, starting from the free end τ_0 , which is located at a spatial position specified by **r** and points to a direction specified by the unit vector u.

In our model, the backbone is divided into $m + 1$ blocks. The propagator within the ith block is designated as

$$
q_C(\mathbf{r}, \mathbf{u}, t) = q_C^{(i)}(\mathbf{r}, \mathbf{u}, t)
$$
 here, $\tau_i \le t < \tau_{i+1}$ $i = 0, 1, 2, \cdots, m$ (3)

which satisfies the modified diffusion equation²

$$
\frac{\partial}{\partial t}q_{\mathbf{C}}^{(i)}(\mathbf{r}, \mathbf{u}, t) = \left[\frac{Nb}{2\lambda_{\mathbf{C}}}\nabla_{\mathbf{u}}^2 - Nb\mathbf{u} \cdot \nabla_{\mathbf{r}} - \omega_{\mathbf{C}}(\mathbf{r})\right]q_{\mathbf{C}}^{(i)}(\mathbf{r}, \mathbf{u}, t)
$$
(4)

This equation is subject to the following initial conditions

$$
q_{\rm C}^{(0)}(\mathbf{r}, \mathbf{u}, 0) = 1 \tag{5}
$$

and

$$
q_C^{(i)}(\mathbf{r}, \mathbf{u}, \tau_i) = q_C^{(i-1)}(\mathbf{r}, \mathbf{u}, \tau_i) \times \frac{1}{4\pi} \int \mathrm{d}\mathbf{u} q_\alpha(\mathbf{r}, \mathbf{u}, t = f_\alpha/m_\alpha) \quad i = 1, 2, \cdots, m
$$
 (6)

Herein, we assume that the side chain is grafted on the backbone in an orientation-independent manner. It means that side chains are grafted to the backbone with the equal probability for all directions. The species index $\alpha = A$, B is determined by the component of the side chain grafted at the specific point along the backbone. The propagator for the side chain satisfies

$$
\frac{\partial}{\partial t}q_{\alpha}(\mathbf{r}, \mathbf{u}, t) = \left[\frac{Nb}{2\lambda_{\alpha}}\nabla_{\mathbf{u}}^2 - Nb\mathbf{u} \cdot \nabla_{\mathbf{r}} - \omega_{\alpha}(\mathbf{r})\right]q_{\alpha}(\mathbf{r}, \mathbf{u}, t)
$$
(7)

which is subject to the initial condition $q_\alpha(\mathbf{r}, \mathbf{u}, 0) = 1$ for the free end.

Because the side chains grafted at two sides of the backbone are distinct, a complementary segment distribution function for the backbone $\tilde{q}_C^{(i)}$ $C^{(1)}(r, u, t)$ is also required. It represents the probability of finding the *t* terminal belonging to the *i*th block along the backbone, starting from the other free end τ_{m+1} , which is at the spatial position **r** and points in a direction specified by the unit vector $-\mathbf{u}$. The propagator within the $(j-1)$ th block is designated as

$$
\tilde{q}_C(\mathbf{r}, \mathbf{u}, t) = \tilde{q}_C^{(j-1)}(\mathbf{r}, \mathbf{u}, t)
$$
 here, $\tau_{j-1} < t \le \tau_j$ $j = m + 1, m, m - 1, \dots, 1$ (8)

which satisfies the modified diffusion equation

$$
\frac{\partial}{\partial t}\tilde{q}_{\text{C}}^{(j-1)}(\mathbf{r}, \mathbf{u}, t) = \left[-\frac{Nb}{2\lambda_{\text{C}}}\nabla_{\mathbf{u}}^2 - Nb\mathbf{u} \cdot \nabla_{\mathbf{r}} + \omega_{\text{C}}(\mathbf{r}) \right] \tilde{q}_{\text{C}}^{(j-1)}(\mathbf{r}, \mathbf{u}, t)
$$
(9)

This equation is subject to the following initial conditions

$$
\tilde{q}_{\mathbf{C}}^{(m)}(\mathbf{r}, \mathbf{u}, t = f_{\mathbf{C}}) = 1\tag{10}
$$

and

$$
\tilde{q}_{\mathbf{C}}^{(j-1)}(\mathbf{r}, \mathbf{u}, \tau_j) = \tilde{q}_{\mathbf{C}}^{(j)}(\mathbf{r}, \mathbf{u}, \tau_j) \times \frac{1}{4\pi} \int \mathrm{d}\mathbf{u} q_{\alpha}(\mathbf{r}, \mathbf{u}, t = f_{\alpha}/m_{\alpha}) \quad j = m, m - 1, m - 2, \cdots, 1 \quad (11)
$$

where the species index $\alpha = A, B$ is determined by the component of the side chain grafted at the junction point. Similarly, the other segment distribution function for the side chain propagating from the *i*th junction point satisfies

$$
\frac{\partial}{\partial t}\tilde{q}_{\alpha}^{(i)}(\mathbf{r}, \mathbf{u}, t) = \left[-\frac{Nb}{2\lambda_{\alpha}} \nabla_{\mathbf{u}}^2 - Nb\mathbf{u} \cdot \nabla_{\mathbf{r}} + \omega_{\alpha}(\mathbf{r}) \right] \tilde{q}_{\alpha}^{(i)}(\mathbf{r}, \mathbf{u}, t)
$$
(12)

which is subject to the initial condition

$$
\tilde{q}_{\alpha}^{(i)}(\mathbf{r}, \mathbf{u}, t = f_{\alpha}/m_{\alpha}) = \frac{\frac{1}{4\pi} \int d\mathbf{u}q_{\mathbf{C}}^{(i-1)}(\mathbf{r}, \mathbf{u}, t = \tau_i)\tilde{q}_{\mathbf{C}}^{(i)}(\mathbf{r}, \mathbf{u}, t = \tau_i)}{\left[\frac{1}{4\pi} \int d\mathbf{u}q_{\alpha}(\mathbf{r}, \mathbf{u}, t = f_{\alpha}/m_{\alpha})\right]^2}
$$
(13)

Minimization of free energy functional Eq. (1) with respective of functions $\phi_{\alpha}(\mathbf{r}), \omega_{\alpha}(\mathbf{r}), \xi(\mathbf{r}),$ we directly arrive at a set of saddle-point approximation equations

$$
\omega_{A}(\mathbf{r}) = N \chi_{AB} \phi_{B}(\mathbf{r}) + N \chi_{AC} \phi_{C}(\mathbf{r}) + \xi(\mathbf{r})
$$
\n(14)

$$
\omega_{\mathbf{B}}(\mathbf{r}) = N \chi_{\mathbf{AB}} \phi_{\mathbf{A}}(\mathbf{r}) + N \chi_{\mathbf{BC}} \phi_{\mathbf{C}}(\mathbf{r}) + \xi(\mathbf{r})
$$
(15)

$$
\omega_{\mathcal{C}}(\mathbf{r}) = N \chi_{\mathcal{A}\mathcal{C}} \phi_{\mathcal{A}}(\mathbf{r}) + N \chi_{\mathcal{B}\mathcal{C}} \phi_{\mathcal{B}}(\mathbf{r}) + \xi(\mathbf{r})
$$
(16)

$$
\phi_{A}(\mathbf{r}) + \phi_{B}(\mathbf{r}) + \phi_{C}(\mathbf{r}) = 1
$$
\n(17)

$$
\phi_{A}(\mathbf{r}) = \frac{1}{4\pi Q} \sum_{i=1}^{m_{A}} \int d\mathbf{u} \int_{0}^{f_{A}/m_{A}} dt q_{A}(\mathbf{r}, \mathbf{u}, t) \tilde{q}_{A}^{(i)}(\mathbf{r}, \mathbf{u}, t)
$$
(18)

$$
\phi_{\mathbf{B}}(\mathbf{r}) = \frac{1}{4\pi Q} \sum_{i=m_{\mathbf{A}}+1}^{m} \int d\mathbf{u} \int_{0}^{f_{\mathbf{B}}/m_{\mathbf{B}}} dt q_{\mathbf{B}}(\mathbf{r}, \mathbf{u}, t) \tilde{q}_{\mathbf{B}}^{(i)}(\mathbf{r}, \mathbf{u}, t)
$$
(19)

$$
\phi_{\mathcal{C}}(\mathbf{r}) = \frac{1}{4\pi Q} \sum_{i=0}^{m} \int \mathrm{d}\mathbf{u} \int_{\tau_i}^{\tau_{i+1}} \mathrm{d}t q_{\mathcal{C}}^{(i)}(\mathbf{r}, \mathbf{u}, t) \tilde{q}_{\mathcal{C}}^{(i)}(\mathbf{r}, \mathbf{u}, t)
$$
(20)

In the present work, we are mainly interested on the lamellar phase self-assembled by the symmetric bottlebrush copolymers. The system can be simplified further that only one spatial variable *z* and one orientational variable θ are concerned. Then, Eqs.(4), (7), (9) and (12) can be numerically solved by the pseudo-spectral methods.^{1,3} Once the propagators are calculated, we are ready to revise the external fields ω_{α} according to the newly obtained component density. In order to accelerate the convergence, we use the Anderson mixing scheme, 4.5 which updates the original field by incorporating the results from several preceding iterations. The free energy in Eq. (1) is used to analyze the thermodynamical stability of a specific morphology.

The degree of microphase segregation for bottlebrush copolymers strongly depends on the number of side chains *m*. For a fixed Flory-Huggins parameter χ , a larger *m* commonly results in a stronger phase segregation. In order to estimate the degree of segregation varying with the increase of *m*, we set $N\chi_{AB} = (m/2)(N_A + N_B)\tilde{\chi}_{AB}$, where $(N_A + N_B)\tilde{\chi}_{AB} = 15$ corresponding to the intermediate degree of segregation is fixed. On account of the radial stretching of side chains, we assume that the backbone is neutral to side chains, i.e. $\chi_{AC} = \chi_{BC} = 0$. Then, the distribution of the backbone is affected by the steric congestion of side chains and the incompressibility constraint, as a consequence of A-B segregation. The present model facilitates us to understand the impact of polymer conformations of the backbone and side chains on the self-assembly behaviors for bottlebrush block polymers.

References

- (1) Fredrickson, G. H. *The Equilibrium Theory of Inhomogeneous Polymers*; Oxford University Press, 2006.
- (2) Jiang, Y.; Li, S.; Chen, J. Z. *The European Physical Journal E* 2016, *39*, 91.
- (3) Jiang, Y.; Zhang, W.-Y.; Chen, J. Z. Y. *Phys. Rev. E* 2011, *84*, 041803.
- (4) Thompson, R. B.; Rasmussen, K. O.; Lookman, T. *The Journal of Chemical Physics* 2004, *120*, 31–34.
- (5) Matsen, M. W. *The European Physical Journal E* 2009, *30*, 361.

Figure S2: The density profiles for (a) the side chain A and (b) the backbone C in the relative length unit over one domain spacing of lamellar phase with the various grafting density σ . The chain flexibility parameters $L_A/2\lambda_A = 40$ and $L_C/2\lambda_C = 7.5$ are used for the block A and the block C, respectively.

Figure S3: The probability distribution of the backbone segments in lamellae at the given grafting density σ = 0.53. (a) The schematic chain conformation of bottlebrush polymers which are specifically investigated in plots (b) and (c). (b) The orientational probability distribution $P_C(u,t_C)$ of the backbone monomer labelled by the contour variable t_C . (c) The positional probability distribution $P_C(z,t_C)$ of backbone monomers labelled by the contour variable t_C . The chain flexibility parameters $L_A/2\lambda_A = 40$ and $L_C/2\lambda_C = 7.5$ are used for the block A and the block C, respectively. Note, we calculate the probability distribution for the bottlebrush molecule whose junction point is located at one specifically selected interface by imposing a restriction of a the interface-location dependence. Thus, herein, the orientation perpendicular to the interface is identified by $u = -1$, which is distinguishable from $u = 1$.

Figure S4: The interfacial width *W* in the relative length unit over *b* as the function of the chain flexibility parameter $L_{SC}/2\lambda_{SC}$ of side chains for the given grafting density as labelled in the plot.

Figure S5: Positional and orientational probability distributions of the backbone segments specifically for three different side-chain conformations parameterized by the flexibility parameter (a) $L_{\text{SC}}/2\lambda_{\text{SC}} = 50$, (b) $L_{\text{SC}}/2\lambda_{\text{SC}} = 6.67$, and (c) $L_{\text{SC}}/2\lambda_{\text{SC}} = 1.25$ at the grafting density $\sigma = 0.47$. The probability functions follows the same definitions in Fig. S3. The chain flexibility parameter $L_C/2\lambda_C = 17$ for the backbone is used here.

Figure S6: The orientational probability distributions for different segments along the sidechain A with the various side-chain flexibility (a) $L_{\text{SC}}/2\lambda_{\text{SC}} = 20$, (b) $L_{\text{SC}}/2\lambda_{\text{SC}} = 5.0$, and (c) $L_{\rm SC}/2\lambda_{\rm SC} = 3.33$ at a given grafting density $\sigma = 0.47$. The probability function $P_{\rm A, \gamma}(u; t_{\rm C})$ represents the orientational probability of finding the specific segment γ along the side-chain A attached to the backbone segment labelled by the contour variable t_C . The definition on t_C is same as the one in Fig. S3a. The side-chain segment index γ denotes the grafting point (1), middle segment (2), and free end (3) of the specified side chain. The orientational variable is defined as $u = \cos \theta$, where the angle θ is graphically defined in Fig. S3a. Note, herein, the orientation perpendicular to the interface is identified by $u = -1$, which is distinguishable from $u = 1$, because the restriction of one specifically selected interface is imposed on the computation of $P_{A,y}(u; t_C)$.

Figure S7: The positional probability distributions for two different ends of one side-chain A with the various side-chain flexibility (a) $L_{\text{SC}}/2\lambda_{\text{SC}} = 20$, (b) $L_{\text{SC}}/2\lambda_{\text{SC}} = 5.0$, and (c) $L_{\text{SC}}/2\lambda_{\text{SC}} = 3.33$ at a given grafting density $\sigma = 0.47$. The probability function $P_{A,\gamma}(z;t_C)$ represents the positional probability of finding the specific segment γ along the side-chain A attached to the backbone segment labelled by the contour variable t_C . The definition on t_C is same as the one in Fig. S3a. The side-chain segment index γ denotes the free end (solid lines) and the grafting point (dotted lines) of the specified side chain. Note, we calculate $P_{A,\gamma}(z;t_C)$ for the bottlebrush molecule whose junction point is located at one specifically selected interface as indicated, by imposing a restriction of the interface-location dependence.