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1 Supporting information for molecular theory

1.1 Density profile expressions and discretization procedure
In this section, we give the expressions for the density of the mo-
bile species and the Poisson equation. The minimization of the
free energy functional W , Eqn 12 in the main text, with respect to
the density profiles of water and ions yields
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The chemical potentials are determined by the bulk concentration
of all species, namely,
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The bulk reference solution is assumed be charge neutral and in-
compressible. The salt is assumed to be completely dissociated
and the pH is adjusted by adding either HCl or NaOH depending
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on the desired value of pH1. Please note that ψbulk is constant
and hence, has been set to zero.

Finally, the variation of the free energy functional W with re-
spect to ψ(r) results Poisson equation and its boundary conditions

εrεo∇
2
ψ + 〈ρq(r)〉= 0 (11)

The boundary condition are

∂ψ(r)
∂ z
|z=0 = 0 (12)

and
ψ(r)|bulk = 0 (13)

The incompressibility constraint and the Poisson Equation need
to be solved simultaneously. Note that its unknowns are the La-
grange multipliers or lateral pressures, π(r), the electrostatic po-
tential, ψ(r) and under poor solvent conditions, the density of
the polymer as well, 〈ρA(r)〉 and 〈ρB(r)〉 Solutions can be ob-
tained by substituting the expressions of the volume fractions of
all components into the incompressibility constraint and the Pois-
son equation. This results in a set of non-linear integrodifferen-
tial equations. By discretizing the space, these equation can be
converted into a set of coupled non-linear algebraic equations,
which then can be solved numerically2. For detailed discretized
expressions, the reader is referred to the previous publications1,3.
The required inputs are the bulk pH, acid dissociation constants
of monomers, bulk salt concentration, the grafting density (for
1D calculations) or the grafting pattern (for 3D calculations), a
set of polymer conformations. and the volumes of all the mobile
species. For three dimensional calculations, periodic boundary
conditions in x and y directions were imposed and a hexagonal
lattice for the placement of grafting sites was employed. In this
coordinate system, the horizontal axes, u and v, are at 60o to each
other. The mapping between x,y,z coordinate system and u,v,z
coordinate system follows the following relations:

v =
xcos(π/12)− ysin(π/12)√
cos2(π/12)− sin2(π/12)

, (14)

u =− xsin(π/12)+ ycos(π/12)√
cos2(π/12)− sin2(π/12)

, (15)

z = z, (16)

Journal Name, [year], [vol.],1–6 | 1

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2020



Here, we only give the discretized version of the Van der Waals
term in equation 13. The function g(|r− r’|) is (`/|r− r′|)6 and
confined to the range ` < |r− r’| < 1.5δ . Hence, the discrete ver-
sion of PDFs read:

P(α, j) =
1
q j

exp(− ∑
a=A,B

∑
b=A,B

∑
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∑
k′,l′,m′

βεab g(k− k′, l− l′,m−m′)

na(α, j,k, l,m)〈φb(k
′, l′,m′)〉

×exp(−β ∑
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(17)

Here, na(α, j,k, l,m) is the number of monomers of type a be-
longing to αth conformation of jth graft located in the cell with
the index k, l and m. g(k− k′, l− l′,m−m′) is the discretized ver-
sion of g(|r−r’|) and is obtained by integration of the vdW attrac-
tions in the cells of the hexagonal lattice by using a Monte Carlo
procedure according to the following expression:
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(18)

where ` is the segment length of monomers.

In order to ensure that the obtained profiles indeed represent
the minimized solutions, we compute the free energy of the sys-
tem through two expressions. The first one is the original ex-
pression (Eqn. 12 in the main text) and the value of free energy
is obtained by numerically substituting the obtained density pro-
files into this expression. The second expression is obtained by
substituting the expressions for density profiles (Eqns. 1 through
5), dissociation profiles (Eqns. 14 and 15 in the main text) and
the chain conformation probabilities (Eqn. 13 in the main text),
obtained from the minimization of free energy, into the original
free energy expression. The resulting expression does not con-
tain any probability terms and depends only the density profiles,
the electrostatic potential, the Lagrange multiplier field and the
polymer normalization constants (q j). For the 3D case, it is given
by
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∫

βπ(r)d3r−
∫
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− 1
2

∫
β 〈ρq(r)〉ψ(r)d3r
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εab

2

∫ ∫
gab(|r− r’|)〈ρa(r)〉〈ρb(r)〉d3rd3r’

(19)

, where the index j runs over all grafting sites and m over all

mobile species, which are H+, OH−, Na+, Cl− and water. Since
the values of the free energy obtained through the above two
methods were the same numerically in our calculations, we can
conclude that the obtained density profiles were indeed the min-
imized profiles.

1.2 Molecular model

Polymer chains are generated using an iso-energetic three-state
rotational isomeric state(RIS) model with a segment length of
` = 0.35 nm.4. The conformations are generated using a sim-
ple sampling Monte Carlo method. All conformations are self-
avoiding and do not penetrate the grafting surface. This was im-
plemented in the chain generation by rejecting the entire chain
as soon as overlap between any two monomers or a contact be-
tween the grafting surface and a monomer is noted and start-
ing the whole process again. To obtain reliable average polymer-
related quantities, we examined how our calculated density pro-
files varied with the number of conformations. We observed that
beyond 0.5 million conformations, a further increase in the num-
ber conformations, did not produce any noticeable change in the
obtained profiles. Notice that the above value also proved to be
sufficient accurate in previous calculations of the Molecular The-
ory3. However, to completely eliminate the risk of numerical in-
accuracies, a total of 1.5 million conformations (per graft point)
were generated. To ensure that the set of conformations do not
introduce any prior directional bias in the resulting microstruc-
ture in 3D calculations, these conformations included 12 30o ro-
tations of each randomly generated chain conformation following
Tagliazucchi et. al.3.

1.3 Biasing protocol for generation of microstructures un-
der poor solvent conditions

As was emphasized in the main text, in 3D calculations, it is often
challenging to obtain laterally inhomogeneous structures. Hence,
one often resorts to biasing the system towards a microstructure
of interest by choosing an initial guess for the algebraic equa-
tion solution having the symmetry of the expected microstructure.
One such method of inducing a microstructure was developed by
Huang and Szleifer5. Its underlying principle is to apply an exter-
nal potential that satisfies the symmetry of the microstructure of
interest. Solving the non-linear equations under this bias results
in a solution conforming to the imposed symmetry. Then the bias
is reduced gradually to zero, which is the equilibrium condition.
If the symmetry of the biasing potential is appropriately selected,
meaning it conforms with an intrinsic underlying physical "natu-
ral" symmetry of the system, then the non-biased equilibrium so-
lution can correspond to a laterally inhomogeneous microstruc-
ture. Examples of it are shown in the main text. Mathematical
details of this method are to be published in a separate work by
the above authors in the future.
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Fig. 1 Effect of blockiness on the dissociation behavior of A and B
monomers. The total number of monomers of each species is 20 and
the fraction of chargeable monomers for both A and B is 0.5. The
copolymer is represented by (AxBx)n, where x is the number of monomers
in each block and n the number of blocks, meaning xn = 20. The salt
concentration is 0.01 M.

2 Results

2.1 Effect of blockiness on the dissociation behavior of
monomers

Figure 1 shows a comparison between polymers with different
degrees of blockiness. It is seen that the degree of charging of
the monomers is highest for alternating copolymers(x=2) and
the least for the diblock copolymers(x=20). Since in the former,
the oppositely charged monomers are already close to each other
along the chain, the chain does not have to undergo any change in
its conformation to decrease the electrostatic energy. However, as
was explained in the main text, in the diblock copolymer, the con-
formational entropic cost of ’bending’ the B block prevents all the
oppositely charged monomers from coming close to each other,
resulting in a decreased degree of charging.

2.2 Effect of asymmetry in chargeable monomer fraction
Here, we show the degree of charging as a function of pH for of
different degrees of imbalance in the amount of acid and base
monomers. Two asymmetric cases have been studied. Namely
(a) A20B10 and (b) A20B30. In the first system, there is a surplus
of acid monomers while in the second, base monomers are in the
majority. Figures 2 and 3 depict the average degree of charging
of both acid and base monomers for pH values 1 through 9, for
A20B10 and A20B30, respectively. It is seen that when the amount
of acid and base monomer is different, the symmetry of the charge
curves around pH = pKa is broken. For an equal amount of acid
base, the average degree of charge as function of pH is symmet-
ric around pH = pKa, as was observed in Figure 2 in the main
text. When there are more acid monomers than base monomers,
as in (A20B10), the isoelectric point, the pH for which the poly-
mer has zero net charge, moves to the left. The reverse happens
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Fig. 2 The dissociation curves for A20B10 under various salt concentra-
tions. The grafting density is 0.10 nm−2.
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Fig. 3 The dissociation curves for A20B30 under various salt concentra-
tions. The grafting density is 0.10 nm−2.

for the opposite case (A20B30). Please note that in these curves,
the isoelectric point does not coincide with the pH marking the
equality between acid and base charge fraction since the charge-
able acid and base monomers in these systems are not equal in
number. Rather the isoelectric point, pI, corresponds to value of
the pH for which 〈 fA−〉NA = 〈 fBH+〉NB. More precisely, it is the pH
of the cross-over from the upregulation to the downregulation of
the acid monomer charge upon salt reduction in the direction of
increasing pH. The same happens at pI for base monomers in the
direction of decreasing pH. Hence, the isoelectric point is charac-
terized by the pH at which the degree of dissociation is insensi-
tive to the salt concentration. For A20B10 polymer, the deficit of B
monomers means that for the net polymer charge to be zero, most
B monomers must be charged and most A monomers uncharged.
This happens when pH<pKa. The same reasoning also explains
the rightward shift of the isoelectric point A20B30 case.
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2.3 Effect of block length and sequence
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Fig. 4 Effect of the length of the B block on the dissociation behavior of A
and B monomers for A20Bn block copolymers for different degree of poly-
merization of the B block. Here, the numbers of chargeable monomers
on both block are the same and are equal to 10. This translates to a
charge fraction of 0.5 for the A block. The corresponding value for the
B block is adjusted accordingly. The salt concentration is 0.01M. The
grafting density corresponds to σP = 0.10nm−2.

Figure 4 shows the effect of the length of the upper B block on
the dissociation behavior of the A and B monomers. The figure
presents the average degree of charge of the A and B monomers
as a function of pH for different lengths of the upper B block. The
A-blocks consist of NA = 20 segments. The salt concentration is
fixed at cS = 0.01M. Other physical and chemical parameters, like
the surface coverage, are the same for all cases.

Our aim here is to investigate the effect of polymer conforma-
tional entropy on the monomer dissociation behavior. Therefore,
the total number of chargeable acid and base monomers is set to
be equal. This means that with increasing length of the B-block,
neutral B monomers are added to the polymer. We observe that
with increasing block length, for the most part of the studied pH
range, the average charge fraction of each block decreases. This
is accompanied by a slightly enhanced asymmetric dissociation
response of A and B monomers, i.e., the isoelectric point shifts
away from pKa towards higher pH values.

The electrostatic interactions and chemical equilibrium or the
monomer dissociation, are coupled together. As argued above,
oppositely charged acid and base monomers would prefer to be
in each other’s proximity. When the B block length NB is small,
the loss of entropy associated with "bringing" the B monomers
closer to the A monomers is small and the gain in the attractive
electrostatic energy outweighs the loss of conformational entropy.
With increasing B-block length, the conformational entropic cost
of bringing the A and B-block closer becomes more prohibitive.
Thus, the electrostatic repulsion between like charges cannot be
counterbalanced anymore by attractive electrostatic interaction
between oppositely charged monomers that are placed close to-
gether. Instead, the system chemically alters the amount of charge

to reduce the overall electrostatic repulsion between like-charged
monomers, thus resulting in a decreased degree of charge of both
monomers.

It is worth mentioning that at extremely low pHs, there is a
slight increase in the degree of dissociation with increasing NB.
For low pH conditions, the A monomers are almost uncharged
and B monomers are fully charged. Hence, electrostatic attraction
between dissimilar monomers is almost absent irrespective of the
value of NB and the electrostatic repulsion between B monomers
is the major contributor to the electrostatic energy. Increasing NB

while keeping the total number of charges constant spaces the
chargeable B monomers further apart, hence reducing the ener-
getic penalty to them being charged.

2.4 Homopolymer profile under different salt concentra-
tions
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Fig. 5 The density profile of the A40 homo-polymer system at pH=6 at
various salt concentrations. The grafting density is 0.10 nm−2.

Fig. 5 gives A-monomer volume fraction profiles for (A40) un-
der various bulk salt concentrations. The corresponding pH is
6. It is seen that the monomer volume fraction profile does not
change shape on salt removal and at low salt concentration, the
brush contracts a little. This behavior is quite established in the
literature1,6 and we do not provide any further explanation here.
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2.5 Proton concentration inside the brush at different pHs
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Fig. 6 Local pH (−log10[H
+](z)) inside the A20B20 brush as a function of

distance under good solvent conditions at pH=4. The dashed line gives
the bulk pH. The grafting density is 0.10 nm−2.
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Fig. 7 Local pH (−log10[H
+](z)) inside the A20B20 brush as a function of

distance under good solvent conditions at pH=5. The dashed line gives
the bulk pH. The grafting density is 0.10 nm−2.
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Fig. 8 Local pH (−log10[H
+](z)) inside the A20B20 brush as a function of

distance under good solvent conditions at pH=6. The dashed line gives
the bulk pH. The grafting density is 0.10 nm−2.

2.6 Variation of height with pH at different salt concentra-
tions
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Fig. 9 The brush height as a function of pH at various salt concentrations.
The grafting density corresponds to σP = 0.10 nm−2. The fraction of
chargeable monomers in each block is 0.5

2.7 Chemical potential vs grafting density under good sol-
vent conditions
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Fig. 10 Chemical potential of the polymer A20B20 as a function of surface
coverage under good solvent conditions at various pH values. The salt
concentration is 0.01 M. Here, 50 percent of both A and B monomers
are dissociable.
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