Supplemental Information for

The Role of Solvent Molecular Weight in Shear Thickening and Shear Jamming

Mike van der Naald^{a,†}, Liang Zhao^{a,†}, Grayson L. Jackson[†], Heinrich M. Jaeger^{a,†}

^aPhysics Department, The University of Chicago, Chicago, IL, USA

[†]James Franck Institute, The University of Chicago, Chicago, IL, USA

email: h-jaeger@uchicago.edu (Heinrich Jaeger)

Figure S1: Steady state rheometry data from suspensions of Aerosil OX-50 particles with $\phi = 0.337$ in PEG-200 and $\phi = 0.339$ in PEG-400. Measured separately with a 25mm parallel plate (PP) geometry with roughened top and bottom plates at two different gap heights, 25mm cone and plate (CP) geometry with $\beta=1^{\circ}$ and roughened top and bottom plates, and a smooth 25mm parallel plate geometry with at two different gap heights. Viscosity is plotted as a function of shear stress for suspensions in (a) PEG-200 and (b) PEG-400.

Figure S2: Steady state rheometry data for the Newtonian suspending liquids used in this study EG, PEG-200, and PEG-400.

Figure S3: Steady state rheometry data from suspensions of spherical silica particles with a diameter of 500nm. Reduced viscosity is plotted as a function of shear stress in EG, PEG-200, and PEG-400.