Supporting Information

Synergistic Effect of Hydrophobic and Hydrogen Bonding Interactions-Driven Viologen-Pyranine Charge-Transfer Aggregates: Adenosine Monophosphate Recognition

Redhills L. Narendran, ArchitaPatnaik*

Department of Chemistry, IIT Madras, Chennai – 600036, India Email: archita@iitm.ac.in

Contents	Page No.
1. Figure S1 – S12: NMR spectra of precursor and viologen derivative V1 to V5.	ves 2-7
2. Figure S13: Synthetic Scheme of viologen derivatives V6 and V7.	8
3. Figure S14-S17: NMR spectra of viologen derivatives V6 and V7.	8-10
4. Figure S18: Photographs of [V2-Pyr] and [V4-Pyr] CT aggregates aqueous medium.	in 11
5. Figure S19: Visual appearance of viologen derivatives, pyranine a	and
the corresponding CT aggregates after vacuum drying.	11
6. Figure S20: PXRD spectral pattern of CT aggregates.	12
7. Figure S21 and S22: TG-DTA analysis of precursors and the CT aggregates	13-14
8. Table S1 – S4 : CHN analysis data of various CT aggregates.	15
9. Figure S23: pH dependent absorption spectra of viologens and pyra	anine. 16
10. Figure S24: Absorption spectra of [V3-Pyr] CT complex and Mie scattering.	e 16
11. Figure S25: ¹ H NMR titration of V4 with pyranine.	17
12. Figure S26: Scheme depicting redox reaction of viologens.	17
13. Figure S27: IR Spectra of V1, pyranine and [V1-Pyr] aggregates	18
14. Figure S28: IR Spectra of V2, pyranine and [V2-Pyr] aggregates	18
15. Figure S29: SEM images of viologen derivatives and CT complex	xes. 19
16. Figure S30: Visual appearance of disaggregation induced AMP se	ensing. 20
17. Figure S31: AMP recognition in HEPES buffer.	21

Figure S2:¹³C NMR spectrum of compound 1

Figure S4:¹³C NMR spectrum of V1

Figure S8: ¹³C NMR spectrum of V3

Figure S10: ¹³C NMR spectrum of V4

Figure S13 Synthetic scheme for viologen derivatives V6 and V7

V6 and V7 are synthesized by reacting 1-dodecyl-4-(4-pyridyl)pyridiniumbromide with 3bromopropionic acid and 6-bromohexanoic acid (Figure S13) according to the procedure adopted for synthesizing V1 and V2.

V6 NMR: ¹H NMR (400 MHz, DMSO-d₆, 25°C): $\delta = 12.76$ (broad singlet), 9.42-9.34 (t, 4H), 8.81-8.79 (d, 4H), 4.92-4.89 (t, 2H), 4.71-4.68 (t, 2H), 3.19-3.16 (t, 2H), 1.99-1.96 (t, 2H), 1.31-1.24 (m, 18H), 0.87-0.84 (t, 3H) ¹³C NMR (125 MHz, DMSO-d₆, 25°C): $\delta = 171.5$, 148.8, 148.5, 146.4, 145.8, 126.6, 126.2, 60.9, 56.6, 34.3, 31.3, 30.8, 29.0, 28.9, 28.8, 28.7, 28.4, 25.4, 22.1, 13.9. ESI-HRMS: calculated for C₂₅H₃₈Br2N₂O₂ 556.1290; found m/z 559.1264 (M+H)⁺, 581.1189 (M+Na)⁺.

V7 NMR: ¹H NMR (500 MHz, DMSO-d₆, 25°C): $\delta = 12.05$ (broad singlet), 9.41-9.40 (d, 4H), 8.81-8.79 (d, 4H), 4.71-4.67 (m, 4H), 2.25-2.22 (t, 2H), 2.02-1.96 (q, 4H), 1.59-1.53 (q, 4H), 1.36-1.23 (m, 20H), 0.86-0.84 (t, 3H) ¹³C NMR (125 MHz, DMSO-d₆, 25°C): $\delta = 174.3$, 148.6, 145.8, 126.6, 60.9, 607, 33.3, 31.3, 30.8, 30.5, 29.0, 28.9, 28.8, 28.7, 28.4, 25.4, 24.9, 23.8, 22.1, 14.0. ESI-HRMS: calculated for C₂₈H₄₄B2rN₂O₂ 598.1761; found m/z 621.1663 (M+Na)⁺.

Figure S17: ¹³C NMR Spectrum of V7

Figure S18 (a) Photographs of [V2-Pyr] and [V4-Pyr] CT aggregates in aqueous medium. **A**: Pyranine; **B**: V2; **C**: V2-Pyranine complex; **D**: V2-Pyranine complex + 20 μ L of 1M NaOH; **E**: D + 20 μ L of 1M HCl; (**b**)**A**: Pyranine; **B**: V4; **C**: V4-Pyranine complex; **D**: V4-Pyranine complex + 20 μ L of 1M NaOH; **E**: D + 20 μ L of 1M HCl; (*Top* – Photographs of aqueous solutions and suspensions taken under room light; *Bottom* – Photographs of aqueous solutions and suspensions taken under UV irradiation at 365 nm)

Figure S19: Visual appearance of the viologen derivatives, pyranine and the corresponding CT aggregates after vacuum drying.

Figure S20 (a) PXRD spectral patterns of V1, V2, Pyranine, [V1-Pyr] and [V2-Pyr] complexes. **(b)** PXRD patterns of V6, V7, Pyranine and [V6-Pyr] and [V7-Pyr] complexes.

Figure S21. TG-DTA analysis of V1, V2, Pyranine, and their charge transfer complexes [V1-Pyr] and [V2-Pyr].

Figure S22. TG-DTA analysis of V6, V7, Pyranine, and their charge transfer complexes [V6-Pyr] and [V7-Pyr].

Both V1 and V2 exhibited single stage decomposition within temperature ranges of 235°C to 313°C and 253°C to 339.69°C (Figure S17). Within 340°C, V1 decomposed upto 98% of its weight and V2 decomposed upto 95% of its initial weight. Pyranine exhibited incomplete decomposition upto 44% of its initial weight upto 937°C. In stark contrast to the precursors, [V1-Pyr] CT aggregate exhibited four stages of decomposition; 6% weight loss from 93 to 99°C (loss of adsorbed moisture), 10% weight loss from 189 to 286° C, a major step of decomposition amounting to 72% weight loss around 298°C to 431°C. Ultimately, a 6% weight loss from 431°C to 921°C was seen leaving behind a residue of less than 6% of its initial weight. On the other hand, [V2-Pyr] exhibited three stages of decomposition, the first one amounting to 79% from 295.81°C to 405°C. The remaining 15% of residual material decomposed from 405°C to 921°C leaving behind a residue of less than 1.5%. TG-DTA data of viologens V6, V7 and their corresponding CT aggregates [V6-Pyr] and [V7-Pyr] too exhibited decomposition pathways identical to [V1-Pyr] and [V2-Pyr] without a marked deviation (Figure S21, SI).

[V1-Pyr]	Experimental	Theoretically calculated	
	(%)	(%)	
		(1:1)	(3:2)
Carbon	57.33	56.15	61
Hydrogen	5.21	5.17	6.12
Nitrogen	3.75	3.19	3.98
Oxygen	-	21.89	19.74
Sulphur	-	10.96	9.13

Table S1 CHN analysis data of [V1-Pyr] CT aggregates, calculated for 1:1 and 3:2 aggregates of V1 and pyranine.

[V2-Pyr]	Experimental (%)	Theoretically calculated (%)	
		(1:1)	(3:2)
Carbon	58.82	57.50	62.39
Hydrogen	5.14	5.59	5.95
Nitrogen	3.53	3.04	3.76
Oxygen	-	20.89	18.63
Sulphur	-	10.46	9.13

Table S2 CHN analysis data of [V2-Pyr] CT aggregates, calculated for 1:1 and 3:2 aggregates of V2 and pyranine.

[V6-Pyr]	Experimental	Theoretically calculated	
	(%)	(%)	
		(1:1)	(3:2)
Carbon	60.41	56.15	61
Hydrogen	5.47	5.17	6.12
Nitrogen	3.82	3.19	3.98
Oxygen	-	21.89	19.74
Sulphur	-	10.97	9.13

 Table S3 CHN analysis data of [V6-Pyr] CT aggregates, calculated for 1:1 and 3:2 aggregates of V6 and pyranine.

[V7-Pyr]	Experimental	Theoretically calculated	
	(%)	(%)	
		(1:1)	(3:2)
Carbon	60.27	57.50	62.39
Hydrogen	5.62	5.59	5.95
Nitrogen	3.63	3.04	3.76
Oxygen	-	20.89	18.63
Sulphur	-	10.46	9.13
Oxygen Sulphur	-	20.89 10.46	18.63 9.13

Table S4 CHN analysis data of [V7-Pyr] CT aggregates, calculated for 1:1 and 3:2aggregates of V7 and pyranine.

Figure S23 pH dependent optical properties of (a) Viologen derivatives (V1, V2) at different pH conditions (acidic, pH = 1 and basic, pH = 13) and (b) Pyranine.

Figure S24. (a) Absorption spectra of 50 μ M pyranine upon stepwise addition of V3 (from 0 μ M to 120 μ M). **(b)** Depiction of predominant Mie scattered absorbance for V2-Pyr and V1-Pyr.

Figure S25 NMR titration of V4 with pyranine in D_2O : (a) V4, (b) Pyranine (pyr), (c) V4 + 0.25 eq. pyr, (d) V4 + 0.5 eq. pyr, (e) V4 + 0.75 eq. pyr, (f) V4 + 1 eq. pyr, (g) V4 + 1.25 eq. pyr, (h) V4 + 1.5 eq. pyr

Figure S26: Redox reactions of viologens

Figure S27: IR Spectra of V1, Pyranine and [V1-Pyr] aggregates.

Figure S28: IR Spectra of V2, Pyranine and [V2-Pyr] aggregates.

Figure S29: SEM Images of (A) and (B) - V1, (C) and (D) - V2, (E) – [V4-Pyr] CT complex

Figure S30 Visual appearance of disaggregation induced recognition of AMP by [V2-Pyr] CT aggregates in water.

Figure S31 Emission spectral response of (a) [V1-Pyr] and (b) [V2-Pyr] CT complex towards adenosine nucleotides in aqueous HEPES buffer (pH = 7.4). (In HEPES buffer, the aggregates dissolved giving rise to a clear solution). (c) Absorption spectra of [V2-Pyr] aggregates in presence of adenosine nucleotides.