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1 Supplementary Information

1.1 Lattice Boltzmann Method (LBM)

We employ a mesoscopic approach to simulate thermal convection in stabilised emulsions, by coupling a lattice
Boltzmann method (LBM) [1, 2] for non-ideal multicomponent mixtures with a LBM for the temperature
field dynamics. The model for multicomponent mixtures has been extensively used and analysed in previous
works [3, 4, 5, 6, 7, 8, 9, 10]. Here we report its essential details. The emulsion is simulated with a two-
component mixture (say A and B). The associated LBM hinges on the dynamical evolution of mesoscopic
probability density functions f i

`(x, t) of finding a particle of component `= A,B in the space-time location (x, t)
with lattice velocity ci, where the index i takes only a finite number of values. We employ a D2Q9 scheme (see
Table 1), with 9 lattice velocities in a two-dimensional domain (i.e. i = 0...8) [1, 2]. The dynamical evolution
of the distribution functions is ruled by the following discretised Boltzmann equation over a unitary time
lapse ∆t = 1

f i
`(x+ci, t +1)− f i

`(x, t) =−
1
τ

(
f i
`− f (eq,i)

`

)
(x, t)+F i

` (x, t). (1)

Eq. (1) embeds a streaming step (l.h.s.) supplemented with local collisions (r.h.s.). The first term of the r.h.s.
is the collision operator in the BGK approximation [11]; the term F i

` (x, t) is the source term [1, 2] and τ is a
relaxation time towards the local equilibrium f (eq,i)

` (repeated indices are summed upon)

f (eq,i)
` = wiρ`

[
1+

ukci
k

c2
s

+
ukup(ci

kci
p− c2

s δkp)

2c4
s

]
, (2)

where wi are the usual D2Q9 weights [1, 2] and c2
s = 1/3 is the squared sound velocity (constant in the

model). The density and global momentum fields

ρ`(x, t) = ∑
i

f i
`(x, t) (3)

ρu(x, t) = ∑
`,i
ci f i

`(x, t), (4)

with ρ = ∑` ρ`, are coarse-grained fields suitably constructed from the distribution functions. The boundary
conditions for the hydrodynamical fields correspond to a no-slip at the walls, which we achieve with the
bounce-back rules [1, 2]. Periodic boundary conditions are applied in the x-direction.
The source term F i

` (x, t) includes the effects of interaction (int) forces, F int
` (x, t), and external (ext) volume

forces, F ext
` (x, t). The first, in turn, includes three terms

F int
` (x, t) = F x

` (x, t)+F a
` (x, t)+F r

` (x, t). (5)

The term F x
` (x, t) is a phase-segregating interaction between the two components. It is introduced in the

model to promote the formation of stable interfaces separating bulk regions with the majority of one of the
two components. This phase-segregating interaction is implemented following the Shan-Chen model [12] for
multicomponent mixtures:

F x
` (x, t) =−

GAB

ρ2
0

ρ`(x, t) ∑
`′,`′ 6=`

∑
i∈NN

wiρ`′(x+ci, t)ci (6)

where ρ0 is a reference density and GAB is a positive coupling constant between species dictating the strength
of phase segregating interactions. The set NN refers to the set of nearest neighbours of point x on the lattice:
this set coincides with the set of the D2Q9 directions used for the streaming of the LBM populations (see
table 1). The two contributions F a

` (x, t) and F r
` (x, t) represent competing interactions [3], i.e. short-range

attractive (a) and long-range repulsive (r) interactions. They are introduced at the interface to inhibit the
coalescence of droplets. Mechanically, they introduce a positive disjoining pressure [4]. In formulae, they
read [7]:

F a
` (x, t) =−G a

``ψ`(x, t) ∑
i∈NN

wiψ`(x+ci, t)ci (7)

F r
` (x, t) =−G r

``ψ`(x, t)

[
∑

i∈NN
piψ`(x+ci, t)ci + ∑

i∈NNN
piψ`(x+ci, t)ci

]
, (8)
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wi = w(ci) pi = p(ci) |ci| ci i
4/9 247/420 0 (0,0) 0
1/9 4/63 1 (±1,0);(0,±1) 1-4
1/36 4/135 2 (±1,±1) 5-8
0 1/180 4 (±2,0) ; (0,±2) 9-12
0 2/942 5 (±1,±2); (±2;±1) 13-20
0 1/15120 8 (±2,±2) 21-24

Table 1: Weights list of Eq. (6), (7) and (8). The set of nearest neighbours (NN) is referred to index i = 0...8,
while next-nearest neighbours (NNN) are links with index i = 9...24.

with G a
`` < 0, G r

`` > 0. In the above expressions, ψ`(x, t) = ψ(ρ`(x, t)) is the pseudo-potential of the Shan-Chen
formulation for multiphase systems [12]:

ψ`(x, t) = ρ0 [1− exp(−ρ`(x, t)/ρ0)] . (9)

The set NNN in (8) refers to next-to-nearest neighbours, i.e. an additional layer of 16 lattice velocities. The
numerical values of the weights are detailed in Table 1. The numerical simulations described in the main
paper use ρ0 = 0.83, GAB = 0.405, G a

AA = −9.0, G a
BB = −8.0, G r

AA = 8.1, G r
BB = 7.1, all values given in lattice

Boltzmann units (lbu). Regarding the external volume forces F ext
` (x, t), a buoyancy term is added to the

global momentum balance in the Boussinesq’s form

F ext
` (x, t) = ρ`(x, t)α gT (x, t)ey, (10)

where T (x, t) is the temperature field relative to some reference temperature, α the thermal expansion
coefficient, g the gravity acceleration and ey the unit vector in the wall-to-wall direction. By summing over
the components `, one can construct the total force

F (x, t) = ∑
`

F` = ∑
`

F int
` (x, t)+∑

`

F ext
` (x, t) = F int(x, t)+F ext(x, t). (11)

At large scales, the long wavelength limit of the lattice Boltzmann model maps into the diffuse-interface
Navier-Stokes-Boussinesq equations [1, 2]:

ρ
(
∂t +u(H)

k ∂k
)

u(H)
i =−∂ jPi j +η0∂ j

(
∂iu(H)

j +∂ ju(H)
i

)
+ραgT δiy i = x,y (12)

where ρu(H) = ρu+F int/2+F ext/2 is the hydrodynamical momentum of the mixture. The non-ideal pressure
tensor Pi j is non-diagonal due to the contribution of interaction forces [13, 14]. The precise expression of
Pi j can be written starting from the knowledge of the interaction forces. Details on the calculations can be
found in [8]. It is important to stress that the bulk viscosity η0 is linked to the relaxation time τ of the lattice
Boltzmann equation (1) according to the following relation [1, 2]:

η0 = ρc2
s

(
τ− 1

2

)
. (13)

Hence, η0 can be tuned via a proper choice of the relaxation time in the lattice Boltzmann dynamics (1).
The evolution of the temperature field T (x, t) is integrated via another properly devised lattice Boltzmann
scheme [15]. In a nutshell, we evolve in time an auxiliary probability distribution function gi(x, t), whose
coarse-grained counterpart is the temperature field:

T (x, t) = ∑
i

gi(x, t). (14)

This is a popular strategy used in the LBM frameworks [1, 2] that we briefly recall here. The mesoscopic
dynamics for gi(x, t) reads as follow:

gi(x+ci, t +1)−gi(x, t) =− 1
τg

(
gi−g(eq,i)

)
(x, t), (15)

where the local equilibrium g(eq,i) takes now the form

g(eq,i) = wiT

[
1+

u(H)
k ci

k
c2

s
+

u(H)
k u(H)

p (ci
kci

p− c2
s δkp)

2c4
s

]
.
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The long-wavelength limit of (15) approximates the advection-diffusion equation for the temperature field

∂tT +u(H)
k ∂kT = κ∂kkT (16)

where

κ = c2
s

(
τg−

1
2

)
(17)

is the thermal diffusivity which can be tuned by changing the thermal relaxation time τg. The advection-
diffusion equation (16) is two-way coupled with the Navier-Stokes equations (12) via i) the fluid velocity
field entering the advection term in (16) and ii) the buoyancy force in the r.h.s. of (12).

1.2 Time-Averaged Nusselt Number: effective modelling at the droplet scale

In Fig. 1 we report the behaviour of the time-averaged Nusselt number 〈Nu〉t as a function of the droplet
concentration Φ0 together with the Nusselt number obtained from single-phase (SP) simulations with 2
different choices for the viscosity of the SP system, based on Eq. (5) (brown triangles) and (6) (diamond-
shaped blue points) of the main paper. This figure highlights that the time-average of the Nusselt number of
the emulsions stays in between these two estimates.
Fig. 2 shows the viscosity profiles as a result of the coarse-graining procedure on ηSP

Λ
(y) (cfr. Eq. (7) of

the main paper) for Λ = 0,3d and Λ→ ∞ (the latter corresponding to a constant effective viscosity) and for
different values of Φ0. The values of ηSP

rheo(Φ0) are also reported for comparison.
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Figure 1: We report data given in Fig. 6 in the main paper with the additional curve of the Nusselt number
for a single-phase (SP) system with a local viscosity ηSP

0 (y) given by Eq. (6) of the main paper. The dark
region refers to a range of concentrations for which non-Newtonian effects start to emerge (cfr. Fig. 2 in the
main paper).

1.3 Anomalous heat transfer fluctuations: from large scales to the droplet scale

In Fig. 3 we report the rheological characterisation of both Newtonian (NE) and non-Newtonian (NNE)
emulsions that are used to obtain the results discussed in Section 6 of the main paper. Both emulsions are
confined in a channel with width H/d = 25, with d the mean droplet diameter. In panel (a) we report the
flow curves relating the stress Σ to the shear rate γ̇ , obtained with dedicated shear experiments (see the main
paper for details). In panel (b) we report the effective dynamic viscosity ηeff(γ̇) = dΣ(γ̇)/dγ̇ as a function of
the shear rate γ̇ extracted from the flow curves in panel (a).
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Figure 2: Viscosity profiles ηSP(y) for different concentrations Φ0 of the emulsions. Predictions for ηSP
rheo(Φ0)

from protocol given in Eq. (5) of the main paper are compared with predictions ηSP
Λ
(y) from protocol given in

Eq. (7) of the main paper using various resolutions of the coarse-graining parameter Λ (cfr. Eq. (8) of the
main paper). The y-coordinate is normalised by the mean droplet diameter d. Viscosities are reported lattice
Boltzmann simulation units.
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Figure 3: Shear rheological characterisation of both NE and NNE discussed in Section 6 of the main paper.
Panel (a): flow curves. Panel (b): the extracted emulsion effective viscosity ηeff(γ̇) = dΣ(γ̇)/dγ̇. A movie of
both NE and NNE is included in this ESI. All dimensional quantities are reported in lattice Boltzmann units.
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